

ENVIRONMENTAL IMPACT RESEARCH PROGRAM

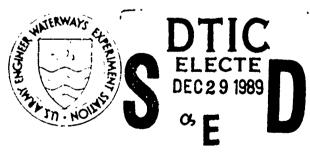
TECHNICAL REPORT EL-89-17

HABITAT UTILIZATION BY JUVENILE PINK AND CHUM SALMON IN UPPER RESURRECTION BAY, ALASKA

by

Mary W. Faurot
US Fish and Wildlife Service
Kenai Fishery Assistance Office
Kenai, Alaska 99611-5089

Steve W. Landino, Reg R. Reisenbichter


US Fish and Wildlife Service Seattle National Fisheries Research Center Seattle, Washington 98115-5007

and

Douglas G. Clarke

Environmental Laboratory

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

November 1989 Final Report

Approved For Public Release Distribution Unlimited

89 12 28 093

Prepared for DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

Under EIRP Work Unit 31627

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE				OMBRO	pproved 0 0704-0188 1e Jun 30, 1956	
A REPORT SECURITY CLASSIFICATION Unclushified		16 RESTRICTIVE MARKINGS				
24 SECURITY CLASSIFICATION AUTHORIT	Υ	3 DISTRIBUTION/AVAILABILITY OF REPORT				
26 DECLASSIFICATION/DOWNGRADING	SCHEDULE	Approved for public release; distribution unlimited.				
4 PERFORMING ORGANIZATION REPORT	NUMBER(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)				
Technical Report EL-89-17 W NAME OF PERFORMING ORGANIZATI		25 NAME OF W	ONITORING ORGA	SIZATIO	W	
M theme of Leur-award Currentari	(If applicable)	L 74 NAME OF MONITORING ORGANIZATION				
See reverse.	See reverse.					
K. ADDRESS (Gty, State, and ZIF Code)		76. ADDRESS (C	ity, State, and ZIP	Code)		
See reverse.						
B). NAME OF FUNDING SPONSORING	BO COPICE SYMBOL	9. PROCUREMEN	IT INSTRUMENT IC	ENTIFICA	UN NOIT	MBER
ORGANIZATION US Army Corps of Engineer	(if applicable)	1				
W. ADDRESS (City, State, and ZIP City)		10, SOURCE OF	FUNDING NUMBE	RS		
		PROGRAM	PROJECT	TASK		WORK UNIT
Washington, DC 20314-100	vn	ELEMENT NO.	МО	МО		EIRP 31627
11 TITLE (Include Security Classification)			<u> </u>	<u> </u>		ELKI SIOZI
Habitat Utilization by Ju		a Salmon in U	pper Resurre	ection	Bay,	Maska
12 PERSONAL AUTHOR(S) Faurot, Mary; Landino, St	eva W.: Reisenbichle	er. Res R.: C	larke. Doug	las G.		
	TIME COVERED		ORT (Year, Month			COUNT
Final report fR	ом то	Novembe	r 1989		93	
16. SUPPLEMENTARY NOTATION Available from National T 22161	echnical Information	Service, 52	85 Port Roya	al Roa	d, Spr	ingfield, VA
17 COSATI CODES	18. SUBJECT TERMS	(Continue on reve	ise if necessary an	d identif	y by bloc	(number)
FIELD GROUP SUB-GR	OUP Chum salmon Daily growth	4	Food habits,	2 (Outmi	gration,//
	Estuarine rea	idence	Otolith anal	Lysis	ETUV	e TMOII
19. ABSTRACT (Continue on reverse if p	ecessary and identify by block	number)		J		
Patterns of habitate keta) salmon were studied site near Seward, AK. Rewere determined by beach Resurrection Bay; estuariand predation on salmon foutmigration period laste May during both years of at seine stations located items in stomachs of both planktonic calanoid coper sculpin (Laptocottus spp.	in Resurrection Bay elative distribution seining during the control of the control of the control of from mid-April the check in the proposed has a pink and chum salmo ods. Fry predators and Myoxocephalus s	y at a propose and alundance training ration from the salmon fry of salmon fry of salmon from area. Ton were epibedincluded Dolopp.), and juit 121 ABSTRACT S	ed small-boxe of salmon period at s: was determined at simple was determined and peaked by and their che most constitute the m	at har fry a ix sta ned by tative in th preda sisten cticoi Salval salmo	bor conditions: otoli ly assume firstors we tly ocid cope	nstruction ir predators in upper th analysis; essed. The t week of ere highest curring food pods and
	ISTRACT! BME AS RPT DTIC USER	1 11-	SECURITY CLASSIFI ICLASSIFIED	LATION		
22a NAME OF RESPONSIBLE INDIVIDUA			(Include Area Cod	(e) 22c	OFFICE SY	MBOL
		1		_1		

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

6a and Sc. NAME AND ADDRESS OF PERFORMING ORGANIZATION (Continued).

US Fish and Wildlife Service Kenai Fishery Assistance Office Kenai, AK 99611-5089

US Fish and Wildlife Service Seattle National Fisheries Research Center Seattle, WA 95115-5007

USAEWES, Environmental Laboratory 3909 Halls Ferry Road Vicksburg, MS 39180-6199

19. ABSTRACT (Continued).

(0. kisutch). Otoliths of juvenile pink and chum salmon exhibited daily growth increments, which were deposited after saltwater entry. Chum salmon (maximum age = 51 estuarine days, mean age = 11.8 days) remained in the study area much longer than pink salmon (maximum age = 18 estuarine days, mean age = 0.7 days).

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

PREFACE

This report was sponsored by Headquarters, US Army Corps of Engineers (HQUSACE), as part of the Environmental Impact Research Program (EIRP) Work Unit 31627, entitled "Effects of Channels and Jetties on Fish and Shell-fish Migration." The Technical Monitors for the study were Dr. John Bushman, Mr. David P. Buelow, and Mr. David Mathis of HQUSACE.

This report was prepared by Ms. Mary W. Faurot, Mr. Steve W. Landino, and Mr. Reg R. Reisenbichler, US Fish and Wildlife Service (USFWS); and Dr. Douglas G. Clarke, US Army Engineer Waterways Experiment Station (WES), under a cooperative agreement between WES and the USFWS.

The following are acknowledged for their assistance in data collection and manuscript preparation: Mr. Jeff Booth, USFWS, for help with field data collection; Messrs. Gerard Gray and Dave Faurot, USFWS, for manuscript review; Ms. Ellen Simpson, USFWS, for assistance in laboratory analysis of stomach contents; Ms. Dana Bruden, USFWS, for drafting figures; Ms. Anne Barrett, USFWS, for initial typing of the manuscript; and the staff of the University of Alaska, Institute of Marine Science Field Experiment Station, for the use of their facility.

Dr. Clarke was the WES Technical Advisor for the agreement under the general supervision of Mr. Edward J. Pullen, Chief, Coastal Ecology Group; Dr. Conrad J. Kirby, Chief, Environmental Resources Division; and Dr. John Harrison, Chief, Environmental Laboratory, WES. Dr. Roger T. Saucier, WES, was the Program Manager of EIRP. This report was edited by Ms. Lee T. Byrne of the Information Technology Laboratory, WES.

COL Larry B. Fulton, EN, was Commander and Director of WES. Dr. Robert W. Whalin was Technical Director.

This report should be cited as follows:

Faurot, Mary W., Landino, Steve W., Reisenbichler, Reg R., and Clarke, Douglas G. 1989. "Habitat Utilization by Juvenile Pink and Chum Salmon in Upper Resurrection Bay, Alaska," Technical Report EL-89-17, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

CONTENTS

			Page
PREF	ACE	· · · · · · · · · · · · · · · · · · ·	1
CONVI		FACTORS, NON-SI TO SI (METRIC) UNITS OF	_
		CUREMENT	3
PART		INTRODUCTION	4
PART		STUDY AREA	8
PART	III:	METHODS	10
PART	Recoffs Juve Pred Outn Dete Phys Anal IV: Insh Offs Juve Pred Outn	core Species Composition, Distribution, and clative Abundance	10 10 11 11 12 13 14 15 17 17 19 20 20 21
	Phys	cical and Water Quality Parameters	23
PART	V:	DISCUSSION	24
		aryelusions	24 28
REFE	RENCES.	• • • • • • • • • • • • • • • • • • • •	29
TABL	ES 1-4		
FIGU	RES 1-2	20	
APPE	NDIX A:	MEAN CATCHES OF SALMON FRY BY LOCATION, DATE, AND TIDE STAGE	A1
APPE	NDIX B:	PERCENTAGE OF SALMON FRY WITH PLANKTONIC AND EPIBENTHIC PREY	B1
APPE	NDIX C:	AGE AND LENGTH DATA FOR SALMON FRY	Cl
APPE	NDIX D:	WATER QUALITY DATA	Dl
APPEI	NDIX E:	MEAN CATCHES OF FISH (OTHER THAN SALMON FRY)	El

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain
acres	4,046.873	square metres
degrees (angle)	0.01745329	radians
knots (international)	0.514444	metres per second

Acces	ssion For			
	GRALI	de		
DTIC TAB				
Unamounced				
Just	lfication_			
Ву				
Distribution/				
Availability Codes				
	Avail and/or			
Dist	Special			
	1 1			
11	1 1			
H-1	1 1			

HABITAT UTILIZATION BY JUVENILE PINK AND CHUM SALMON IN UPPER RESURRECTION BAY, ALASKA

PART I: INTRODUCTION

- 1. Patterns of habitat utilization by juvenile pink (*Oncorhynchus gorbuscha*) and chum (*O. kata*) salmon were studied in Resurrection Bay at a proposed small-boat harbor construction site near Seward, AK.* These salmon populations had not been surveyed before and may be extremely sensitive to environmental changes caused by construction of the breakwater. This report presents the results of the 2-year preconstruction study that can be applied to studies of similar coastal engineering projects in waters occupied by anadromous fishes and that will serve as a baseline to be measured against once construction has been completed.
- 2. The proposed harbor location lies at the mouth of the Resurrection River (Figure 1), which, along with its tributaries, provides major spawning habitat for several species of anadromous salmon important to commercial and sport fisheries. Pink and chum salmon stocks from this and other Resurrection Bay systems are harvested in Resurrection Bay as part of the Lower Cook Inlet (Eastern District) commercial fishery, which is managed by the Alaska Department of Fish and Game. Because of the ? ar life cycle of pink salmon, adults return to spawning streams in pr sable and highly segregated evennumbered-year and odd-numbered-year runs. In Resurrection Bay, even-numberedyear runs are dominant, and in strong years, over 100,000 pink salmon and over 10,000 chum salmon are commercially harvested (Alaska Department of Fish and Game 1987). Annual spawning runs (escapement) in Resurrection River tributaries average over 30,000 pink salmon (Table 1). Coho salmon (Cncorhynchus kisutch) are not fished commercially in this area, but the coho salmon sport fishery is the second largest in Alaska, with an annual harvest of over 17,000 fish (Vincent-Lang, Bernard, and McBride 1988). The coho salmon management program in Resurrection Bay involves supplemental plantings of fry

^{*} US Army Engineer District (USAED) Alaska. 1982. "Detailed Project Report and Final Environmental Impact Statement: Proposed Small Boat Harbor Navigational Improvements, Seward, Alaska, 1982," Unpublished Report, Alaska District, Anchorage, AK.

and fingerlings, monitoring smolt and adult migrations, and evaluating the sport fishery.

- 3. This study focused on juvenile pink and chum salmon, considered the primary juvenile salmonids of concern in shallow nearshore estuarine areas due to their small size during outmigration (in contrast to other local salmonids) (Hiss and Boomer 1986). Juvenile pink and chum salmon (hereinafter referred to as salmon fry) emerge from the gravel in spawning streams after absorbing most of their yolk sacs and within a few days migrate directly to the sea. The timing of emergence is determined by stream temperatures during incubation (Sheridan 1962) and, in Alaska, has been correlated with increased or peak water flows following ice breakup (Buklis and Barton 1984). Fry in Alaska generally begin emerging during April or May and continue over a 1-month span (Sheridan 1962, Morrow 1980). Outmigrating pink salmon range from 28 to 32 mm in length (Sheridan 1962, Rogers and Burgner 1967), and chum salmon from 35 to 40 mm; (Kirkwood 1962). Emergence and outmigration usually occur at night, and in short coastal streams, fry reach the marine environment by dawn (Neave 1955, Bailey 1969). Little or no feeding occurs during short migrations, and yolk reserves may not be completely depleted until marine residence is established (Rogers and Burgner 1967, Morrow 1980).
- 4. Extensive literature exists regarding the estuarine and marine ecology and behavior of juvenile salmon in waters off the coasts of Washington and British Columbia; less is available representing Alaskan systems. In all systems, however, estuarine residence is extremely important to pink and chum salmon fry as the result of a number of life history requirements. Fry use shallow inshore waters (typically estuarine areas) as nurseries and require a critical period spent in these low-salinity habitats to undergo growth and make osmoregulatory adjustments prior to migration into offshore marine waters. Residence time (total time that juvenile salmon occur in nearshore estuarine habitats) is determined by size at saltwater entry, availability of preferred prey, river discharge, and estuarine topography (Simenstad, Fresh, and Salo 1982). Pink salmon remain in shallow, nearshore zones for periods of 2 days to 1 month, and when a size of 40 to 60 mm is attained, begin gradual, irregular movement to offshore habitats (Thorsteinson 1962, McInerney 1964, Neave 1966, Bailey 1969). Chum salmon residence times are longer, ranging from 1 week to 2 months before offshore movement begins (Mason 1974; Bax and Whitmus 1981; VTN Oregon, Inc. 1981).

- 5. During residence in estuarine waters, fry form schools near shore during daylight hours and disperse at night (Hoar 1956, Neave 1966). Juvenile pink walmon generally remain near the surface in slow water areas (Bailey 1969), whereas chum salmon are more benthic, preferring mud or sand bottoms with ealgrass for cover (Meyer 1979). Mortality of fry during early marine life is high (Parker 1968, 1971), primarily due to predation. Known fry predators include birds, marine mammals, large marine invertebrates, and fishes such as Dolly Varden (Salvelinus malma), juvenile coho salmon, herring (Glupea harengus), Pacific tomcod (Microgadus proximus), and sculpins (Myoxocaphalus spp. and Laptocottus spp.).
- 6. The first few months that fry spend in the sea are typically a time of rapid growth. Adequate food resources in nursery areas are critical to fry survival during this period (LeBrasseur and Parker 1964, Healey 1979). Chum salmon fry rely primarily on epibenthic harpacticoid copepods and amphipods, whereas pink salmon are dependent on more pelagic zooplankters (Kaczynski et al. 1973; Bailey, Wing, and Mattson 1975; Cooney et al. 1978; Healey 1979; Simenscad 1980; Godin 1981).
- 7. The location of the proposed harbor lies immediately adjacent to the path of outmigrating salmon fry from the Resurrection River (Figure 2) and may encompass a fry nursery area. Project design involves a rubblemound breakwater that will extend approximately 275 m into the bay, run parallel to shore for about 760 m, and will include a midtide breach in the northern breakwater as a passageway to facilitate movement of fry through the harbor. The inner portion of the harbor will be dredged to a uniform depth of 5.5 m.* Harbor construction would have the following physical effects: (a) approximately one-third of the intertidal area of the Resurrection River would be altered, (b) several braids of the delta would be rechanneled, (c) 118 acres** of tidal flats would be eliminated by dredging and construction, and (d) the mouth of the river would eventually shift to the west. Environmental concerns include the following: (a) nursery or rearing habitat may be modified, (b) salmon fry may be forced to move seaward without sufficient time spent in nursery habitats, (c) salmon fry may be impeded in their normal movement down the

^{*} USAED, Alaska, op. cit.

^{**} A table of factors for converting non-SI units of measurement to SI (metric) units is found on page 3.

shoreline of the bay, (d) salmon fry may be forced to spend a disproportionate amount of time in deeper waters where they may be exposed to increased predation pressure and suboptimal food resources, (e) fry may become concentrated within or around the breakwaters and thereby be preyed upon by fishes attracted to the structures, and (f) salmon fry may suffer the effects of reduced water quality resulting from increased siltation, temperatures, and discharge of boat wastes.

- 8. In view of these concerns, this preconstruction monitoring study was developed so that it could be replicated in postconstruction studies. The objectives were as follows:
 - a. To establish the spatial and temporal distribution and relative abundance patterns of juvenile pink and chum salmon in inshore and offshore zones of the upper reaches of Resurrection Bay.
 - b. To assess qualitatively the dependence of juvenile pink and chum salmon on planktonic versus epibenthic food resources as a means to estimate the value of the intertidal nursery habitat.
 - c. To evaluate predation on juvenile pink and chum salmon in intertidal habitats in the proposed harbor area.
 - d. To estimate outmigration timing.
 - e. To estimate estuarine residence time for juvenile pink and chum salmon at the project site.
 - f. To establish the patterns of relevant physical and water quality parameters in the upper reaches of Resurrection Bay.

PART II: STUDY AREA

- 9. Resurrection Bay is a fjord estuary located on the Kenai Peninsula of south-central Alaska (Figure 1). The Resurrection River empties into the northeastern terminus of the bay through a large deltaic wetland area. Otherwise, the surrounding bay has steep slopes that drop to depths of 100 to 300 m. Glacial icefields overlook the bay, and strong winds and heavy precipitation are characteristic of the area. Winds are predominately from the south between April and September and northerly during the rest of the year.
- 10. The city of Seward, a community of approximately 2,500 people, is located on the northwestern shore of Resurrection Bay. Major industries are commercial fishing, tourism, and the Alaska Railroad. In addition, Seward is the site of an Alaska Marine Highway System ferry terminal, a vocational training school, and a field experiment station for the University of Alaska's Institute of Marine Science. Seward is served by the Alaska Marine Highway System, commercial air service, a State highway, and the Alaska Railroad.
- ll. The shoreline of Resurrection Bay is subject to two diurnal tides of relatively great range, with an extreme range of about 6 m, a mean range of 2.5 m, and a mean diurnal range of 3.2 m. Marine waters of the outer bay are relatively clear with low concentrations of suspended sediments except during glacial melt or storm wave activity. The Resurrection River is a glacial stream, has formed sediment deposits in the upper bay, and contributes a considerable silt load to the entire bay during glacial melt. Peak discharge occurs mainly between July and September and varies from approximately 75 to 500 m³/sec, the average being about 110 m³/sec. During the winter, fresh water input drops to below 50 m^3 /sec and may be as low as 10 m^3 /sec between January and March (US Geological Survey, unpublished data). Generally, the less dense fresh water overlays the denser marine water and flows seaward out of the bay. The seaward flow of fresh water at the surface entrains dense marine water from below; this process results in a longitudinal salinity gradient and an up-estuary flow beneath the surface outflow. This generalized flow pattern describes a unique estuarine circulation characteristic of relatively shallow depths within fjords such as Resurrection Bay (Heggie, Boisseau, and Burrell 1977).
- 12. The study area for this investigation encompassed the Resurrection River below Salmon Creek, lower Salmon Creek, and the upper intertidal reaches

of Resurrection Bay southward to Fourth of July Creek and Lowell Point (Figure 2). A freshwater sampling station was established in Salmon Creek, two estuarine stations were established within or closely adjacent to the proposed harbor site, and four additional stations were established in surrounding reaches of the bay. Photographs depicting general aspects of the proposed harbor site and each estuarine station are presented in Figure 3. The upper intertidal areas of the three easternmost stations (designated Noname, Cliff, and Houseboat) consist of loose graywacke plate from 2 to 50 cm in size. The lower intertidal areas of these stations and the total intertidal area of the two northernmost stations (designated North and Greenhouse) consist of approximately 66-percent sand and 34 percent silt. Both upper and lower intertidal areas at the southernmost station (designated Lowell Point) consist of cobbles. The bottom at the four northernmost stations is relatively flat and shallow, with increasing slope with distance to the southwest, dropping off abruptly around 1 km from shore. The bottom at the two southernmost stations drops abruptly beyond the intertidal area (Figure 2). Common intertidal aquatic vegetation includes eelgrass (Zostora spp.), rockweed (Fucus distichus), sea lettuce (Ulva spp.), and kelp (Laminaria spp.).

PART III: METHODS

13. Fieldwork was conducted for 2 years during the outmigration period of Alaskan pink and chum salmon Ery. In 1986, sampling began during the first week of April and was completed by the third week of May except for one sampling in mid-June. In 1987, sampling commenced during the third week in April and was completed during the last week in June.

Inshore Species Composition, Distribution, and Relative Abundance

abundance of juvenile salmon and their predators, beach seining was conducted at six stations across the upper shoreline of Resurrection Bay (Figures 2 and 3). A beach seine 27.4 by 1.8 m constructed of 4.7-mm square ace mesh with a 3.2-mm square ace mesh bag was used. Three replicate hauls were conducted at each station at both high and low tide each week throughout the sampling period during each year. Because of dewatering and subsequent seining inefficiency at low tide, no low tide seine sampling was conducted at Noname in 1987. Records of the numbers and species of all fishes caught were maintained. Random subsamples of juvenile pink and chum salmon from every station and fry predators from harbor stations were preserved in 70-percept ethanol for length, age (fry only), and stomach content analyses.

Offshore Juvenile Salmon Distribution

15. To assess offshore juvenile salmon distribution in upper Resurrection Bay, tow netting was undertaken weekly during May 1986 and during the week of 8 June 1987. The tow net measured 2.7 by 2.7 m across the mouth, was 8.2 m in length, and was constructed of mesh sizes varying from 3.2 to 38 mm. A 20-min surface tow was made weekly along each of 5 transects in 1986 and once along each of 10 transects in 1987 (midbay transects were added in 1987) (Figure 2).

Juvenile Salmon Food Habits

- 16. To establish the degree of juvenile salmor dependence on planktonic versus epibenthic food resources, six pink and six chum salmon juveniles from each station (three from each tide stage) from 19 May through 22 May 1986 (the most productive beach seining week in terms of juvenile salmon catches) were randomly selected, and their stomach contents were identified. The number of stomach samples in which one or more of a given food item was found was recorded.
- 17. The frequency of occurrence of epibenthic and planktonic food resources in fry stomachs was calculated by taking the number of stomachs that contained one or more of a given food item and expressing it as a percentage of the total number of nonempty stomachs (Windell and Bowen 1978), thereby estimating the proportion of the population that fed on that particular item. The same method was used to determine the frequency of occurrence of salmon fry in predator stomachs.

Predation on Juvenile Salmon

18. To evaluate the level of predation on juvenile salmon in intertidal habitats in the proposed harbor area, fry predators from the two harbor site stations (Noname and Cliff) were randomly subsampled from beach seine catches and preserved for stomach contents analysis. Fry predators were identified in 1986 by opportunistically subsampling all potential predator species. Fry predation was systemically analyzed in 1987 by subsampling up to 10 fish per predator species (coho salmon, Dolly Varden, great sculpin (Myoxocephalus polyacanthocephalus), and staghorn sculpin (Leptocottus armatus) from seine hauls from each harbor site station for each tide level each week. Some of the predators were not likely to have ingested fry because of their small size and were eliminated from further stomach content analysis. Predator fork length to the nearest millimetre and numbers of pink and chum salmon fry per stomach were recorded.

Outmigration Timing

- 19. Several methods of sampling were employed in fresh water to determine approximate outmigration timing and to collect reference samples for age determination. Sampling focused on Salmon Creek, a major tributary to the lower Resurrection River with known salmo, spawning and relatively easy road access. A fyke trap, 0.91 m in diameter, 2.7 m long, with 2.7-m wings and constructed of 4.7-mm square Delta 15.9-kg netting, was deployed 1 to 4 nights per week from 2 April through 5 May 1986. The sampling station was located approximately 150 m downstream of the Nash Road bridge (Figure 2). The net was typically placed in midchancel facing upstream and was cleaned and checked every 6 to 12 hr. Collected juveniles were identified, subsampled, and measured for fork length (millimetres).
- 20. Sampling was also conducted in Salmon Creek using a 2.7-m-long smolt net with a 0.46-m-diam mouth, constructed of 2.3-mm knotless nylon mesh, and with a large baffled cod end for low-stress capture of live fish. Sampling occurred on 1 to 3 nights per week from 9 April through 21 May 1986 and from 20 April through 3 June 1987. The net was suspended from the Nash Road Bridge into the area of greatest apparent flow in Salmon Creek and was checked every 2 to 12 hr. Collected juveniles were identified, subsampled, measured for fork length (millimetres), and preserved in 70-percent ethanol for otolith analysis.
- 21. Other tributaries of the Resurrection River and Bay were sporadically sampled in 1986 to determine outmigration timing and contribution to the Resurrection Bay juvenile salmon population. Minnow traps were used to sample Fourth of July, Spring, Noname, Bear, and Salmon Creeks and the mainstem Resurrection River (Figure 2). Sampling was conducted intermittently at these locations from 10 April through 21 May 1986. The traps were baited with salmon eggs and placed in the streams overnight. All collected fish were identified and recorded, and collected pink and chum salmon juveniles were subsampled and preserved in 70-percent ethanol.

Determination of Estuarine Residence Time

Pond evaluation

- 22. A study to identify otolith increment periodicity for knc a fry was conducted in an experimental saltwater pond on the grounds of to University of Alaska Institute of Marine Science facility. The tubber-lined pond has a capacity of 1,000 m³. Nutrient-rich water from a depth of 73 m is pumped into the pond. The exchange rate with Resurrection Bay is 5 percent per day.
- 23. Several preliminary evaluations of conditions in the experimental pond were made prior to the introduction and rearing of salmon fry. To qualitatively determine the food supply present in the pond, three oblique plankton tows (bottom depth, 4.3 m; diameter of net, 18 cm; mesh size, 0.2 mm) were made from the shoreline once during the last week of April and once during the first week of May 1987. During the last week of April, 20 pink and 5 chum salmon fry (captured in Salmon Creek that morning and believed to have emerged from the gravel that day) were introduced into the pond. The fry remained in the pond (within a 1- by 1-m, 5-mm-mesh netpen) for 1 week; then they were removed, and their general condition was assessed.

Rearing of known-age fry

24. During the first week of May 1987, 439 pink and 4 chum salmon fry from the Salmon Creek smolt-net samples were transferred to the experimental pond in an aerated cooler filled with stream water. Only healthy fry were introduced into the pond. Fry were sampled at approximately weekly intervals with a 7.5- by 2-m, 0.5-cm-mesh seine from mid-May through late June. Fish were preserved in 70-percent ethanol for the subsequent extraction of sagittal otoliths.

Otolith extraction and preparation

25. Each fish was positioned under a dissecting microscope, and both of the otoliths were removed through a single dorso-ventral incision through the dorsal surface of the head, perpendicular to the longitudinal axis. Membranes adhering to the otoliths were removed in a water bath, and the clean otoliths were mounted sulcus sides down on glass slides with a heat-sensitive plastic resin. Otoliths were ground to the maximum diameter with a grinding jig (Neilson and Geen 1982) using 1.0-µ alumina polishing compound.

Otolith reading and daily growth increments

- 26. When available, otoliths from 10 fish of each species (pink and chum salmon) from each sampling week (1987) from each seine station were analyzed. Analysis was performed on additional fish collected during the first week of May (the week exhibiting the highest catches of salmon fry). Otoliths were also analyzed from pink salmon collected at weekly intervals from the experimental pond (10 fish sampled from each of the 7 weeks of pond residence). In total, otoliths were examined from 301 unknown-age fry (203 chum and 98 pink salmon) and from 71 known-age fry (1 chum salmon and 70 pink salmon).
- 27. The numbers of daily growth rings or increments were counted on each otolith to give estuarine age in days. An increment was defined as a thin, dark band plus an associated wider, light band when viewed under a microscope with transmitted light (Campana and Neilson 1985). In addition to the otolith readings, fork length was recorded for each fish.
- 28. Prepared otoliths were viewed with transmitted light under a compound microscope at magnifications of X250, X400 or X1,000. Counts of increments were made along a radius of the dorsal lobe approximately 135 deg from the rostral portion of the longitudinal axis of the otolith (Figure 4), unless increments along this axis were obscured. A radius between 90 and 180 deg from the longitudinal axis was used when the 135-deg radius was judged unacceptable.

Physical and Water Quality Parameters

29. Spatial, seasonal, and tidal patterns of physical and water quality parameters were identified by measuring current speed, current direction, optical turbidity, water temperature, dissolved oxygen, conductivity, and pH at each beach seining station (Figure 2). Sampling was conducted at inshore and offshore sites during low and high tide. Inshore sites were located as closely as possible to the shoreline (with a minimum of 1-m bottom depth); offshore sites were located offshore the beach seining sites at bottom depths of 4.6 to 6.1 m. Physical data were collected at bottom, midcolumn, and surface levels at offshore sites and from bottom and surface levels at inshore sites. One complete set of physical data was collected between 18 April and

- 7 May 1986. Water temperature, dissolved oxygen, conductivity, and pH were measured weekly at harbor stations and intermittently at nonharbor stations between 20 April and 26 June 1987.
- 30. Water temperature, dissolved oxygen, conductivity, and pli were measured with a Hydrolab Surveyor 11.* Transmitted light and scattered light as functions of optical turbidity were measured with a Montedoro-Whitney TMU-3 Transmissometer/nephelometer. Current speed and direction were measured with an Endeco Type 110 Remote Reading current meter.

Analysis

- 31. Percent composition was used as an index of relative abundance of fry and fry predators for comparison between beach seining stations. Catch per unit effort (unit effort = seine haul) was also used to compare the spatial and temporal distribution and abundance of salmon fry, fry predators, and other species caught during beach seining. Catch per unit effort was calculated by dividing the total catch for each species by the number of seine hauls on each date. Comparisons were made for catches from pooled or partitioned stations, station types (harbor or nonharbor, east or west, north or south), dates, and tide stages, using t-test procedures to test the null hypothesis that no difference existed in catches of pooled or partitioned fry and fry predators between high and low tide samples, station types, or sample years. An observed significance level of P \leq 0.05 was used to reject or accept the null hypothesis.
- 32. Catch per unit effort was also used as an index of relative abundance over time to evaluate outmigration timing in Salmon Creek. Catch per unit effort (unit effort = 1 hr of gear deployment) was calculated by dividing the total smolt-net or fyke-net catch of fry for each species by the number of hours the gear was fishing on a given day.
- 33. The frequency of otolith growth increments was evaluated by counting the increments of known-age fish sampled from the experimental pond. The otoliths of pond fish had a darker discontinuous zone, or transfer check,

^{*} The use of trade names does not reflect endorsement by the US Fish and Wildlife Service or US Army Engineer Waterways Experiment Station, Vicks-burg, MS.

coinciding with the date of capture and introduction into the saltwater pond. This provided a reference point from which to begin evaluating age. The number of growth increments between the check and the periphery of the otolith was interpreted as saltwater age. To confirm daily periodicity of increments in pond fish, increment counts were compared with days of residence in the pond.

- 34. To identify a reference point on the otoliths indicating the onset of estuarine residence in wild fry, the mean radius from the major nuclei to the beginning of consistent increment formation for wild and pond otoliths was compared with the mean radius from major nuclei to the otolith periphery for fry collected from Salmon Creek. Increment formation and fork length of unknown-age fish were compared with those of known-age fish from the experimental pond.
- 35. Mean ages were calculated for each fry species by location and date. Increment counts were made for both left and right otoliths, and when different, counts were averaged in calculations for mean age.

PART VI: RESULTS

Inshore Species Composition, Distribution, and Relative Abundance

36. Species composition of beach seine catches totaled 21 taxa which included 5 species of salmon; anadromous Dolly Varden, eulachon (Thalcichthys pacificus), and stickleback (Gasterosteus aculeatus); 3 species of flatfish; 2 species of sculpin; 5 nearshore benthic species; and 3 nearshore pelagic species (Table 2).

Salmon fry

- 37. The mean number of fry (both pink and chum salmon, all stations combined) caught per seine haul in 1986 was nearly three times that of the 1987 mean (9.3 verses 3.2, respectively) (Figure 5). This was primarily attributable to a much higher catch of pink salmon (at all stations except Cliff) in 1986 than in 1987 (6.8 versus 0.8 per seine haul, respectively). Catches of chum salmon did not differ as drastically between the 2 years (Figure 6) and averaged 2.5 fish per seine haul each year. For both years, fry catches in seine hauls peaked in the first week of May. In 1986, the increase in mean catches was dramatic between the last week in April and the first week in May; in 1987, the increase was less pronounced (Figure 5). Catches of chum salmon peaked 2 weeks earlier in 1987 than in 1986; catches of pink salmon peaked during the same week both years (Figure 7). Appendix A contains raw seine data for salmon fry.
- 38. Over all stations, salmon fry were most abundant at Cliff in 1986 (47.4 percent of total catch) and at Noname in 1987 (53.3 percent) (Figures 8 and 9). These stations combined (both are proposed harbor site stations) contributed 57.1 percent of the total fry catch in 1986 and 59.0 percent in 1987.
- 39. Although this difference in fry catches between harbor and nonharbor stations appeared appreciable, t-test comparisons indicated that no significant difference existed between fry catches at harbor and nonharbor stations at the 0.05 level. When harbor versus nonharbor catches were compared using only combined dates of peak fry catches (4-18 May 1986; 27 April-11 May 1987), differences were again found to be statistically insignificant. However, four of six cases (fry only) approaching significance at the 0.10 level indicate that more years of data may have shown higher catch rates of salmon fry at the project sites (Table 3). Null hypotheses (no difference

- exists) were also tested for north (Greenhouse, North, Noname, Cliff) versus south (Lowell Point, Houseboat) stations and east (Greenhouse, Lowell Point) versus west (North, Noname, Cliff, Houseboat) stations using all dates and just peak dates: No significant differences were observed.
- 40. Pink salmon fry were most abundant at Cliff (mean = 24.8) and least abundant at Noname (mean = 1.8) in 1986, and most abundant at Noname (mean = 2.5) and least abundant at North (mean = 0.1) in 1987. This was probably an artifact of the very low pink salmon catch at all stations in 1987. Chum salmon were most abundant at Lowell Point (mean = 7.3) and least abundant at North (mean = 0.9) in 1986, and most abundant at Noname (mean = 10.7) and least abundant at Cliff (mean 0.5) in 1987.
- 41. When combining stations to analyze 1987 catches by tide stage, Noname was excluded because it was not sampled during low tide. Differences between high and low tide catches were not consistent over time nor at all stations and proved to be statistically insignificant. When t-test comparisons were used to compare catches by tide (H_O: no difference exists between high and low tide catches), no significant differences were found for pink salmon fry, chum salmon fry, or salmon fry at combined stations for either combined date and peak dates, or at each station for combined dates and peak dates (Table 3). One exception was noted: Low tide catches of chum salmon at Houseboat were significantly higher than high tide catches. The data suggest, however, that the proportion of fish taken at high tide increases through the season, presumably as the fish grow (Figure 10).

Predators

- 42. The mean number of predators (Dolly Varden, sculpin, and juvenile coho salmon,) caught per seine haul in 1987 was over twice that of the mean catch in 1986 (9.0 versus 4.2, respectively) (Figure 11). Catches of all predator species were higher in 1987, but especially for coho salmon (Figure 12). In 1986, predator catches were highest during the last week of sampling (mid-June), and in 1987, during the first week of June.
- 43. Fry predators were most abundant at Cliff during both years and were least abundant at Noname in 1986 and at North in 1987 (Figures 13 and 14). Mean catches of predators from harbor stations were significantly higher than those from nonharbor stations in 1987 (Table 3). These differences were not observed for 1986 catches. In addition, no significant difference in

predator catches was observed between north and south stations or between east and west stations.

44. Catches of predators were not significantly different between high and low tides (stations combined), nor were catches of individual predators with two exceptions: catches of sculpins were significantly higher in low tide samples in 1987, and catches of coho salmon were higher in high tide samples in 1986. When stations were analyzed separately, predator catches were significantly higher at high tide at Lowell Point and significantly higher at low tide at North and Houseboat.

Other fishes

45. Of the species collected during beach seining (other than fry or fry predators), herring, sand lance (Ammodytes hexapterus), starry flounder (Platichthys stallatus), sockeye salmon smolts (O. norka), and eulachon were the most abundant. High catches of herring, eulachon, and sand lance in spawning condition were intermittently observed at Cliff, Houseboat, and Lowell Point. Spawning sand lance were observed during low tide on the

exposed mud flats at North during mid-May 1987.

Offshore Juvenile Salmon Distribution

46. No pink or chum salmon fry were captured during offshore tow netting, but up to 250 larval smelt were caught in every tow in 1987. One juvenile coho salmon and one small kelp greenling (*licxagrammos decagrammus*) were also captured in 1987.

Juvenile Salmon Food Habits

47. The two most consistently occurring food items in both pink and chum salmon stomachs were planktonic calanoid and epibenthic harpacticoid copepods. Dipteran larvae and adults were also common for chum salmon. Other frequently encountered food items included epibenthic amphipods and ostracods and planktonic decapod zoea, *Daphnia* spp., copepod nauplii, and fish larvae. Frequencies of amphipods and ostracods were higher in stomachs of chum salmon than in those of pink salmon. For pink salmon, 88 percent of the stomachs contained epibenthic prey, 79 percent contained planktonic prey, and 67 percent contained both. For chum salmon, 86 percent contained epibenthic prey,

93 percent contained planktonic prey, and 96 percent contained both. There were no appreciable differences in frequencies between harbor and nonharbor stations, but a more diverse array of food items was present in samples from nonharbor stations (see Appendix B).

Predation on Juvenile Salmon

- 48. In 1986, 33 juvenile coho salmon, 40 Dolly Varden, 31 sculpin, 8 tomcod (Microgadus proximus), 17 starry flounder, and 10 sockeye salmon (O. narka) stomachs from Cliff and Noname stations were analyzed for presence of pink or chum salmon fry. Of these, Dolly Varden, coho salmon, and sculpin had eaten fry (Table 4); 20 percent of the Dolly Varden, 9 percent of the coho salmon, and 6 percent of the sculpin stomachs contained fry. Stomach contents (other than fry) of sculpin included shrimp and other crustaceans; of Dolly Varden, included herring and sand lance; and of coho salmon, included crustaceans.
- 49. In 1987, 66 sculpin, 90 coho salmon, 121 Dolly Varden, 41 tomcod, 23 herring, and 18 sockeye salmon from Cliff and Noname were analyzed for presence of fry; 3 percent of the sculpin, 7 percent of the coho salmon, 6 percent of the Dolly Varden, 2 percent of the tomcod, and none of the herring or sockeye salmon contained fry (Table 4). Predators collected from the second week through the final week of sampling had eaten fry. Only Dolly Varden stomachs contained more than one fry per stomach.

Outmigration Timing

50. Overnight fyke-net catches of up to four fry per hour were observed from early April through early May in 1986. On 5 May, an overnight sample yielded thousands of juvenile salmon. This was considered to be the outmigration peak. After this time, the trap was removed for the rest of the sample period due to the difficulty in operating it for short periods during heavy outmigration. The smclt net, however, could easily be left in operation for short periods during heavy outmigration. After 5 May, smolt-net sampling was continued for short periods until the end of the sampling period, with catches of 8 to 19 fry per hour throughout May (Figure 15).

- 51. Smolt-net catches of juvenile pink salmon in Salmon Creek were much higher than catches of chum salmon. Catch per hour ranged from 4.3 to 47.3 pink salmon per hour between 20 April and 5 May 1987, with the peak catch occurring on 5 May (Figure 15). Chum salmon catches ranged from 0.3 to 2.3 fish per hour for the same period, with the peak catch occurring on 20 April. Water levels in Salmon Creek rose rapidly after early May. The smolt net did not operate as afficiently then because of clogging with debris and gravel, and it was removed. Outmigration may have continued for a longer period than reported here.
- 52. Juvenile chum salmon from Salmon Creek samples averaged 39.0 mm in total length with a range of 35 to 42 mm (N = 25). Juvenile pink salmon averaged 32.0 mm with a range of 29 to 34 mm (N = 60).
- 53. Overnight minnow trapping in Spring Creek and Bear Creek yielded pink and chum salmon fry in late and mid-May 1986. Juvenile salmon catches per trap night by stream were 0.25 and 1.00. Stomachs of juvenile Dolly Varden captured in minnow traps in Salmon Creek and Spring Creek also yielded salmon fry.

Determination of Estuarine Residence Time

54. Plankton tows in the experimental pond yielded extremely abundant quantities of a copepod, Acartia clausi, and diatoms. Of the 20 pink and 5 chum salmon fry introduced into the pond for preliminary evaluation of survival, 18 pink and 4 chum salmon remained alive and in good condition after 1 week. Since an adequate food supply appeared to be available and conditions seemed suitable for fry survival, the experimental pund was used for rearing known-age fry.

Frequency of increment formation

- 55. Salmon fry from the freshwater sampling station in Salmon Creek did not show daily growth increments and were assumed to be zero-age fish. The zone from the major nuclei to the otolith periphery, representing freshwater preemergence growth, was amorphous in these fish (Figure 16).
- 56. For the known-age pink salmon reared in the experimental pond, growth increments beyond the saltwater transfer check were of regular, consistent intensity, and the number corresponded closely to the number of days in the pond for 6- and 13-day-old fish. This indicated that saltwater growth

increments were deposited daily for the first 13 days (Figure 17). Thereafter, more increments than days in the pond were present, and the increments were of more variable intensity (Figure 18). The fish apparently began to deposit subdaily increments between day 13 and day 20.

- 57. For otoliths taken from Resurrection Bay salmon fry samples, the mean radius (in micrometres) from the major nuclei to the beginning of consistent increment formation (pink: 8.5, chum: 10.5) differed little from the mean radius from the major nuclei to the otolich periphery for the Salmon Creek fry (pink: 8.6, chum: 10.7). This confirmed the interpretation of the dark check at initial increment formation as a transfer check, indicating entrance to salt water.
- 58. Increments deposited by Resurrection Bay fish were regular rings of very similar intensity (Figure 19). As with the pond fish, the first increment past the amorphous zone was assumed to have been laid down on the first day postemergence. On the basis of the consistent intensity of increments of the wild fish and the agreement between increment count and age in the pond-reared fish for increments of consistent intensity (to day 13), the investigators concluded that growth increments were daily in both wild pink and wild chum salmon.

Estimated ages of fish rearing in Resurrection Bay

59. Pink salmon moved rapidly through Resurrection Bay. Most fish examined lacked daily growth increments, and very few fish older than 7 days were observed. In contrast, many juvenile chum salmon remained in the Bay for substantially longer periods (Figure 20). The mean age of pink salmon fry (all stations combined) was 0.7 days (range = 0 to 18 days, N = 98 fish) and for chum salmon as 11.8 days (range = 0 to 51 days, N = 203 fish). Pink salmon had the is at residence times at Noname (mean = 1.7 days, N = 25) and the shortest residence times at Greenhouse, North, and Cliff (mean are zero days, N = 11, 4, and 18, respectively). Chum salmon had the longest residence times at Houseboat (mean = 20.6 days, N = 58) and the shortest at North (mean = 5.6 days, N = 20). Age and length data for all aged salmon fry are presented in Appendix C.

Physical and Water Quality Parameters

ĵ

60. The primary value of the physical data will be for preconstruction and postconstruction comparisons. Appendix D contains all raw physical data.

PART V: DISCUSSION

Summary

- 51. The lower catch of pink salmon fry in 1987 compared with 1986 probably reflected poor overwintering survival and the occurrence of an extreme autumn flood in 1986, as parent escapements into Salmon Creek were much higher in 1986 (8.3 thousand) than in 1985 (2.1 thousand) (Alaska Department of Fish and Game 1987). High floods are known to especially affect survival of pink salmon eggs, as they are not deposited as deeply as those of other salmon species (Morrow 1980).
- 62. Fry were most abundant in seine haul catches during the last week in April and the first 3 weeks in May. Because catches of pink salmon rose and fell abruptly and those of chum salmon, more gradually, temporal analysis alone indicated that pink salmon were using the study area as a migration corridor, whereas chum salmon were remaining longer and using it as a nursery or rearing area. These use patterns are similar to those described for these species in southeast Alaska (Cooney et al. 1978), Puget Sound (Levy, Northcote, and Birch 1979), and the Fraser River estuary (Healey 1982).
- 63. Pink salmon fry have been known to invade estuaries on high tides and leave on the first of ebb tides (Levy, Northcote, and Birch 1979). In contrast, chum salmon have been reported to retreat into tidal creeks during low tide (Muson 1974, Healey 1982). Tidal fluctuations in Resurrection Bay, though greater in magnitude than those elsewhere which affect fry distribution (Healey 1982), appeared to have little significant influence on the nearshore distribution of salmon fry in the study area.
- 64. Although not significantly different, catches of fry at harbor stations were often greater than those at nonharbor stations. Several orientation and substrate characteristics of the two harbor stations make them favorable habitat for salmon fry. Noname is located adjacent to a braid of the Resurrection River, and Cliff is in the direct path of southeasterly freshwater outflow from the outlet of the river. Because of location and shoreline configuration, these areas probably receive outmigrating salmon fry at a higher frequency than the other stations sampled. In addition, Noname (at high tide) is protected by a promontory to the west and by the mainland shoreline to the east, forming a sheltered, low-current cove. Noname provided

the most sheltered habitat of all the stations. Although composed primarily of silt and sand, substrates at Noname and Cliff also supported beds of eelgrass and sea lettuce not present at the other stations. This vegetation was not obvious early in the sampling period, but became quite dense by mid-May. Salmon fry are known to prefer quiet water with cover-protecting vegetation (Meyer 1979).

- 65. Predator catches were significantly higher at harbor stations than at nonharbor stations in 1987. Predators may have preferred these areas for some of the same reasons as salmon fry (protective cover) or may have been attracted to the concentrations of salmon fry there as a food source. In addition, outmigrating coho salmon from the Resurrection River (from Alaska Department of Fish and Game fingerling plants) probably pass through the harbor area at a higher frequency than the nonharbor areas. Peak catches of predators corresponded to peak catches of coho salmon and occurred during mid-June in 1986 and early June in 1987. Coho salmon outmigration (from fingerling plants into Bear Lake) usually peaks in mid-June, which was the probable source of the 1986 peak. Coho salmon smolts were also released into Resurrection Bay in late May during both years (more released in 1987 than in 1986) (Vincent-Lang, Bernard, and McBride 1988), which probably resulted in the 1987 peak. Fingerling plants and smolt releases are being increased annually; and as 7 to 9 percent of the coho salmon examined contained pink or chum salmon fry, this could represent a potential impact on fry survival. Coho salmon have been known to have a significant effect on salmon fry survival (Parker 1971, Hargreaves and LeBrasseur 1985).
- 66. Herring and tomcod are known to be predators of pink and chum salmon fry in southeast Alaska (Thorsteinson 1962), but did not appear to be feeding actively on fry in this study. However, herring were intermittently present in huge quantities at Cliff and Lowell Point, and relatively few were examined. Herring predation may have occurred at a higher rate than detected here.
- 67. The epibenthic food preferences of pink and chum salmon, well documented elsewhere (Kaczynski et al. 1973, Healey 1979, Godin 1981, Simenstad and Salo 1982), were not apparent in Resurrection Bay. However, very few stomachs, collected over a narrow time span, were analyzed in this study.
- 68. Further effort to determine the offshore distribution and abundance of salmon fry was not undertaken because of the secondary nature of this

- objective (inshore distribution and abundance studies were considered higher priority). The tow net used in this study is efficient gear for capturing sockeye salmon fry in lakes (Flagg et al. 1987). As reported elsewhere (Tyler 1966), a larger net and greater coverage of the bay would have likely produced better results. However, fry may have moved quickly from nearshore areas out of Resurrection Bay.
- 69. Many previous studies documenting daily growth increments in sagittae of juvenile salmonids have used hatchery fish or fish reared in spawning channels, so the true age of the fish examined was known with a high degree of accuracy (Wilson and Larkin 1980; Marshall and Parker 1982; Neilson and Geen 1982, 1984; Volk et al. 1984). Confirmation of daily growth increments has yet to be done with certainty in wild juvenile salmonids, although Neilson, Geen, and Bottom (1985) sampled juvenile chinook salmon (O. tshawytscha) in Oregon and inferred daily growth increments from indirect evidence.
- 70. The growth increments shown by the pond-reared pink salmon closely matched their time in the pond for the first 13 days of residence. Thereafter, increment count exceeded true age in days (Figure 17). This type of subdaily growth increment deposition has been shown for chinook salmon juveniles fed liberally four times a day (Neilson and Geen 1982). For the first 10 days in Neilson and Geen's study, growth increments matched true age, but shifted into a subdaily pattern as the experiment progressed. During their study, fish that fed once a day deposited an average of one growth increment every 24 hr. The increased increment deposition of the fish fed four times daily was not reflected by increased length, as the two feeding groups showed no significant differences in length.
- 71. By contrast, pond-reared pink salmon showed increased lengths over their similar-age counterparts sampled from Resurrection Bay (pond pink salmon 20 days old, mean = 53.6 mm; Resurrection Bay pink salmon 18 days old, mean = 43 mm). These growth differences were also evident in chum salmon (pond-reared chum salmon 34 days old, mean = 78.0 mm; Resurrection Bay chum salmon 34 and 35 days old, mean = 52.8 mm).
- 72. The experimental pond is an artificially productive rearing environment, because it receives nutrient-rich water from 73-m depth in Resurrection Bay (Paul, Hood, and Neve 1976). The high abundance of diatoms and copepods present in this system apparently provided a nearly unlimited food supply for the juvenile salmonids throughout their residence in the pond. The

very rapid growth of the young salmon was accompanied by subdaily growth increment formation on the otoliths after day 13 in the pond.

- 73. The investigators believe that the increments on otoliths of fish taken from Resurrection Bay were deposited in a daily sequence. The present study has four lines of evidence indicating that daily growth increments occur in wild pink and chum salmon:
 - a. The length of the radius from the major nuclei to the transfer or saltwater entry check in the pond-reared pink salmon was nearly identical to the length of the radius from the major nuclei to the otolith edge of the Salmon Creek pink salmon (the zone of preemergent freshwater growth), indicating that the check was deposited on the first day of saltwater (pond) residence, probably within 1 day of emerging from the gravel.
 - b. The radius through the freshwater growth zone of both pink and chum salmon from Salmon Creek was about the same distance as the onset of distinct and consistent growth increments found in the wild pink and chum juveniles from Resurrection Bay, indicating that the onset of distinct and consistent growth increments for naturally rearing fish also occurred on the first day of saltwater residence in Resurrection Bay.
 - c. Growth increments in pink salmon placed in the pond closely matched residence time for the first 13 days of residence. Growth increments after 13 days were visually distinct from the earlier, daily increments; later increments were not of uniform intensity.
 - d. Growth increments in salmon from Resurrection Bay matched the even spacing and uniform intensity of the pond-reared fish during the first 13 days.
- 74. The freshwater growth zone can be generally characterized as an amorphous region of the ground otolith, lacking uniform incremental growth but including patches of inconsistent ring patterns of variable intensity. The freshwater zone contrasts strongly with the regular pattern of incremental growth shown in the juvenile salmon taken from Resurrection Bay or reared in the experimental pond.
- 75. Increment counts could be biased. Imprecise grinding can remove outer increments if the otolith is ground too deeply. Also, the edges are occasionally almost translucent, preventing detection of increments that may exist. Contrarily, edges are sometimes darker near the glue-otolith edge interface, potentially masking existing increments. These factors can bias increment count in the direction of underestimating age. The study indicates that this edge effect may cause an underestimate of 1 to 3 days and should be recognized when inferring age in these samples based on increment count.

76. In summary, a case has been made for the deposition of daily growth increments in the otoliths of wild pink and chum salmon juveniles. The most important factor supporting the inference that the increments in Resurrection Bay pink and chum salmon reflect daily growth was the appearance of a distinct regular pattern of incremental growth, similar to that formed in pond-reared fish for the first 13 days of pond residence. A subdaily pattern of incremental growth has been shown for pond-reared pink salmon greater than 13 days cld. The irregular subdaily pattern of light and dark rings after 13 days in the pond was not present on the otoliths of fish from Resurrection Bay.

Conclusions

- 77. During outmigration, pink and chum salmon fry and their predators were often relatively more abundant in the vicinity of the proposed project site than at other areas sampled in upper Resurrection Bay.
- 78. Tidal fluctuations had little influence in the general nearshore distribution of pink and chum salmon fry and their predators in upper Resurrection Bay.
- 79. Juvenile pink and chum salmon appeared equally dependent on epibenthic and planktonic food resources during early May in upper Resurrection Bay.
- 80. Of the three fish groups shown to eat fry (Dolly Varden, coho salmon juveniles, and sculpin), Dolly Varden ate the most juvenile pink and chum salmon.
- 81. Peak outmigration for juvenile pink and chum salmon occurred during the first week of May in upper Resurrection Bay.
- 82. Increment formation on pink and chum salmon otoliths apparently began with saltwater entry, and increments were deposited one a day.
- 83. Pink salmon fry moved rapidly through upper Resurrection Bay, using it as a migration corridor for only several days, while chum salmon remained in the area for up to 1 month.
- 84. A subdaily pattern of incremental growth was observed for pink salmon fry experimentally reared under optimal prey ration conditions. The subdaily pattern began after 13 days of pond residence and was distinct from the increment patterns of fish taken from Resurrection Bay.

REFERENCES

- Alaska Department of Fish and Game. 1987. "Lower Cook Inlet Area Annual Finfish Management Report, 1987," Division of Commercial Fisheries, Homer, AK.
- Bailey, J. E. 1969. "Alaska's Fishery Resources—the Pink Salmon," Fishery Leaflet No. 619, US Fish and Wildlife Service, Bureau of Commercial Fisheries, Washington, DC.
- Bailey, J. E., Wing, B. L., and Mattson, C. R. 1975. "Zooplankton Abundance and Feeding Habits of Fry of Pink Salmon, Cneorhynchus gorbuscha, and Chum Salmon, O. Kuta, in Traitors Cove, Alaska, with Speculations in the Carrying Capacity of the Area," Fishery Bulletin, Vol 73, No. 4, pp 846-861.
- Bax, N. J., and Whitmus, C. J. 1981. "Early Marine Survival and Migratory Behavior of Juvenile Chum Salmon Released from the Enetai Hatchery, Washington in 1980," FRI-UW-8109, Fisheries Research Institute, University of Washington, Seattle, WA.
- Buklis, L. S., and Barton, L. H. 1984. "Yukon River Fall Chum Salmon Biology and Stock Status," Informational Leaflet No. 239, Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage, AK.
- Campana, S. E., and Neilson, J. D. 1985. "Microstructure of Fish Otoliths," Canadian Journal of Fisheries and Aquatic Science, Vol 42, pp 1014-1032.
- Cooney, R. T., Urquhart, D., Nevě, R., Hilsinger, J., Clasby, R., and Barnard, D. 1978. "Some Aspects of the Carrying Capacity of Prince William Sound, Alaska, for Hatchery Released Pink and Chum Salmon Fry," Sea Grant Report 78-4, Institute of Marine Science, University of Alaska, Fairbanks, AK.
- Flagg, L. B., Gray, G. A., Koenings, J. P., and Tarbox, K. E. 1987. "Summary of Sockeye Investigations in Tustumena Lake, 1981-1986," Progress Report No. 5, Alaska Department of Fish and Game, Soldotna, AK.
- Godin, J. G. J. 1981. "Daily Patterns of Feeding Behavior, Daily Rations, and Diets of Juvenile Pink Salmon (*Oncorhynchus gorbuscha*) in Two Marine Bays of British Columbia," <u>Canadian Journal of Fisheries and Aquatic Science</u>, Vol 38, pp 10-15.
- Hargreaves, N. B., and LeBrasseur, R. J. 1985. "Species Selective Predation on Juvenile Pink (Oncorhynchus gorbuscha) and Chum Salmon (O. keta) by Coho Salmon (O. kisutch)," Canadian Journal of Fisherics and Aquatic Science, Vol 42, pp 659-668.
- Healey, M. C. 1979. "Detritus and Juvenile Salmon Production in the Nanaimo Estuary: I. Production and Feeding Rates of Juvenile Chum Salmon (Oncorhynchus keta)," Journal of the Fisheries Research Board of Canada, Vol 36, pp 488-496.
- . 1982. "Juvenile Pacific Salmon in Estuaries: The Life Support System," in V. S. Kennedy, ed., Estuarine Comparisons, Academic Press, New York, pp 315-341.
- Heggie, D. T., Boisseau, D. W., and Burrell, D. C. 1977. "Hydrography, Nutrient Chemistry and Primary Productivity of Resurrection Bay, Alaska, 1972-75," Institute of Marine Science Report R77-2, Alaska Sea Grant Report 77-9, University of Alaska, Fairbanks, AK.

- Hiss, J. M., and Boomer, R. S. 1986. "Feeding Ecology of Juvenile Pacific Salmonids in Escuaries: A Review of Recent Literature," US Fish and Wildlife Service, Fisheries Assistance Office, Olympia, WA.
- Hoar, W. S. 1956. "The Behavior of Migrating Pink and Chum Salmon Fry," Journal of the Fisheries Research Board of Canada, Vol 13, No. 3, pp 309-325.
- Kaczynski, V. W., Feller, R. J., Clayton, J., and Gerke, R. J. 1973. "Trophic Analysis of Juvenile Pink and Chum Salmon (Oncorhynchus gorbuscha and keta) in Puget Sound," <u>Journal of the Fisheries Research Board of Canada</u>, Vol 30, pp 1003-1007.
- Kirkwood, J. B. 1962. "Inshore Marine and Freshwater Life History of the Pink Salmon, Oncorhynchus gorbuscha (Walbaum), and the Chum Salmon O. kota (Walbaum), in Prince William Sound, Alaska," Ph.D. Thesis, University of Louisville, Louisville, KY.
- LeBrasseur, R. J., and Parker, R. R. 1964. "Growth Rate of Central British Columbia Pink Salmon," <u>Journal of the Fisheries Research Board of Canada</u>, Vol 21, pp 1101-1128.
- Levy, D. A., Northcote, T. G., and Birch, G. J. 1979. "Juvenile Salmon Utilization of Tidal Channels in the Fraser River Estuary, British Columbia," Technical Report 23, University of British Columbia, Westwater Research Centre, Vancouver, BC.
- Marshall, S. L., and Parker, S. S. 1982. "Pattern Identification in the Micro-Structure of Sockeye Salmon (Oncorhynchus norka) Otoliths," Canadian Journal of Fisheries and Aquatic Sciences, Vol 39, pp 542-547.
- Mason, J. C. 1974. "Behavioral Ecology of Chum Salmon Fry (Oncorhynchus kata) in a Small Estuary," <u>Journal of the Fisheries Research Board of Canada</u>, Vol 31, pp 83-92.
- McInerney, J. E. 1964. "Salinity Preference: An Orientation Mechanism in Salmon Migration," <u>Journal of the Fisheries Research Board of Canada</u>, Vol 21, No. 5, pp 995-1018.
- Meyer, J. H. 1979. "A Review of the Literature on the Value of Estuarine and Shoreline Areas to Juvenile Salmonids in Puget Sound, Washington," US Fish and Wildlife Service, Fisheries Assistance Office, Olympia, WA.
- Morrow, J. E. 1986. "The Freshwater Fishes of Alaska," Alaska Northwest Publishing Company, Anchorage, AK.
- Neave, F. 1955. "Notes on the Seaward Migration of Pink and Chum Salmon Fry," <u>Journal of the Fisheries Research Board of Canada</u>, Vol 12, No. 3, pp 369-374.
- . 1966. "Chum Salmon in British Columbia," International North Pacific Fisheries Commission Bulletin 18, Vancouver, Canada.
- Neilson, J. D., and Geen, G. H. 1982. "Otoliths of Chinook Salmon (*Oncorhynchus tshawytscha*): Daily Growth Increments and Factors Influencing Their Production," <u>Canadian Journal of Fisheries and Aquatic Sciences</u>, Vol 39, pp 1340-1347.
- . 1984. "Effects of Feeding Regimes and Diel Temperature Cycles on Otolith Increment Formation in Juvenile Chinook Salmon, Oncorhynchus tshawytscha," US Fishery Bulletin, Vol 83, pp 91-101.

- Neilson, J. D., Geen, G. H., and Bottom, D. 1985. "Estuarine Growth of Juvenile Chinook Salmon (*Oncorhynchus tshawytscha*) as Inferred from Otolith Microstructure," Canadian Journal of Fisheries and Aquatic Science, Vol 42, pp 399-908.
- Parker, R. R. 1968. "Marine Mortality Schedules of Pink Salmon of the Bells Couls River, Central British Columbia," <u>Journal of the Fisheries Research Board of Gunada</u>, Vol 25, No. 4, pp 757-794.
- . 1971. "Size Selective Predation Among Juvenile Salmonid Fisher in F British Columbia Inlet," <u>Journal of the Fisheries Research Board of Cerads</u>, Vol 28, pp 1503-1510.
- Paul, A. J., Hood, D. W., and Neve, R. A. 1976. "A Note on Rearing Juvenile Chum Salmon, One orhymchus kota, in an Artificial Upwelling System," Aquaculture, Col 9, pp 387-390.
- Rogers, D. E., and Burgner, & J. 1967. "Nushagak District Salmon Studies," in J. R. Hatches and F. B. 16th, ed., Research in Fisheries—1967, Contribution No. 280, College of Fisheries, Fisheries Research Institute, University of Washington, Seattle, WA.
- Sherida, W. L. 1962. "Relation of Stream Temperatures to Timing of Pink Salmon Escapenness to Southeast Alaska," in H. R. McMillan, ed., Lectures in Fisheries. Symposium on Pink Salmon, University of British Columbia. Vancouver, WA. pp 87-102.
- Simenstad, C. A. 1980. "Trophic Relationships of Outmigrating Chum and Pink Fry, 1977-1979," in C. A. Simmstad, W. J. Kinney, S. S. Parker, E. O. Salo, J. R. Cordell, and H. Buechner, ed., <u>Prey Community Structure and Trophic Ecology of Outmigrating Jevenile Chum and Pink Salmon in Hood Canal, Washington: A Synthesis of Three Years' Studies, 1977-79, Fisheries Institute Report No. FRI-UW-8026, College of Fisheries, University of Washington, Scattle, WA, pp 103-139.</u>
- Simenstad, C. A., and Salo, E. O. 1982. "Foraging Success as a Determinant of Estuarine and Nearshore Carrying Capacity of Juvenile Chum Salmon (Oncorhynchus kata) in Hood Canal, Washington," in B. R. Melteff and R. A. Neve, ed., Proceedings of the North Pacific Aquaculture Symposium, 1980, Anchorage, AK, and Newport, OR, Alaska Sea Grant Report 82-2, University of Alaska, Fairbanks, AK, pp 21-37.
- Simenstad, C. A., Fresh, K. L., and Salo, E. O. 1982. "The Role of Puget Sound and Washington Coastal Estuaries in the Life History of Pacific Salmon: An Unappreciated Function," in V. S. Kennedy, ed., Estuarine Comparisons, Academic Press, New York, pp 343-364.
- Thorsteinson, F. V. 1962. "Herring Predation on Pink Salmon Fry in a South-eastern Alaska Estuary," <u>Transactions of the American Fisheries Society</u>, Vol 91, No. 3, pp 321-323.
- Tyler, R. W. 1966. "Use of the Tow Net in Forcasting Runs of Pink Salmon to Kodiak Island, Alaska," in W. L. Sheridan, ed., <u>Proceedings of the 1966 Northeast Pacific Pink Salmon Workshop</u>, Alaska Department of Fish and Game, Juneau, AK.

Vincent-Lang, D., Bernard, D., and McBride, D. N. 1988. "Evaluation of Past Enhancement of Coho, Chinook, and Sockeye Salmon Stocks of Bear Lake and Resurrection Bay, Alaska, with Recommendations for the Future," Alaska Department of Fish and Game Fishery Manuscript Series No. 6, Division of Sport Fish, Juneau, AK.

Volk, E. C., Wissmar, R. C., Simenstad, C. A., and Eggers, D. M. 1984. "Relationship Between Otolith Microstructure and the Growth of Juvenile Chum Salmon (Oncorhynchus keta) Under Different Prey Rations," Canadian Journal of Fisheries and Aquatic Sciences, Vol 41, pp 126-133.

VTN Oregon, Inc. 1981. "Distribution, Abundance, and Food Habits of Juvenile Salmon at the Heads of Boca de Quadra and Wilson Arm/Smeaton Bay During 1981," Quartz Hill Molybdenum Project, Southeast Alaska, prepared for United States Borax and Chemical Corporation and Pacific Coast Molybdenum Company.

Wilson, K. H., and Larkin, P. A. 1980. "Daily Growth Rings in the Otoliths of Juvenile Sockeye Salmon (Oncorhynchus norka)," Ganadian Journal of Fisheries and Aquatic Sciences, Vol 37, pp 1495-1498.

Windell, J. T., and Bowen, S. H. 1978. "Methods for Study of Fish Diets Based on Analysis of Stomach Contents," in T. Bagenal, ed., Methods for the Assessment of Fish Production in Fresh Waters, Blackwell Scientific Publications, Oxford, pp 219-226.

Table 1

Pink Salmon Escapement and Pink and Chum Salmon Commercial

Harvest in Resurrection Bay, Alaska, 1978-1987

	Pink Salmon Escapement*	Commercial Catch*		
Year		Pink Salmon	Chum Salmon	
1978	26.1	29.7	0.1	
1979		0	0	
1980	40.7	155.8	0.7	
1981	2.7	32.6	2.4	
1982	51.9	137.4	7.7	
1983	13.6	27.1	6.9	
1984	46.5	125.5	3.9	
1985	74.7	74.6	3.0	
1986	40.7	36.5	3.5	
1987	11.6	11.8	13.9	
10 Year Avg.	34.2	63.1	4.2	

From Alaska Department of Fish and Game (1987).

^{*} Numbers are in thousands.

Table 2

Species List of Fishes Captured in Seine Hauls in Resurrection Bay, Alaska, During 1986 and 1987

Scientific Name	Common Name
Ammodytes hexapterus	Pacific sand lance
Clupea harengus pallasi	Pacific herring
Leptocottus armatus	Pacific staghorn sculpro
Myoxocephalus polyacanthocephalus	Great sculpin
Microgadus proximus	Pacific tomcod
Gasterosteus aculeatus	Threespine stickleback
Hexagrammos decagrammus	Kelp greenling
Osmerus spp.	Smelt
Thaleichthys pacificus	Eulachon
Fholis lasta	Crescent gunnel
Hippoglossoides elassodon	Flathead sole
Lepidopsetta bilineata	Rock sole
Platichthys stellatus	Starry flounder
Oncorhynchus gorbuscha	Pink salmon
Oncorhynchus keta	Chum salmon
Oncorhynchus kisutch	Coho salmon
Oncorhynchus nerka	Sockeye salmon
Oncorhynchus tshawytscha	Kink salmon
Salvelinus malma	Dolly Varden
Anoplarchus purpurescens	High cockscomb
Syngnathus leptorhynchus	Bay pipefish

Table 3 Kesults from T-Tests Testing Catch Differences Between Tide Stages and Harbor Versus Nonharbor Stations

			Mean Cat	ch Per Sein		
Fish Group	Low Tide	High <u>Tide</u>		Harbor Stations	Nonharbor Stations	<u> </u>
			1986			
Fry						
Pink	6.0	7.5	0.740	13.7	3.4	0.117
Chum	1.7	3.2	0.265	2.8	2.2	0.672
Fry Total	7.7	10.7	0.536	16.5	5.7	0.113
Predators						
Coho	0.7	1.5	0.062	1.5	0.9	0.328
Sculpin spp.	1.5	1.2	0.507	1.0	1.4	0.326
Dolly Varden	1.5	2.0	0.604	1.8	1.8	0.985
Predator Total	3.4	5.0	0.162	4.3	4.1	0.896
			1987			
Fry						
Pink	0.4	0.8	G.470	1.1	0.6	0.590
Chum	1.4	1.9	0.590	3.9	1.9	0.103*
Fry Total	1.7	2.6	0.430	4,9	2.5	0.159
Predators						
Coho	3.1	4.6	0.360	8.7	2.1	0.004*
Sculpin spp.	3.6	0.6	0.001**	5.1	1.0	0.005*
Dolly Varden	2.4	3.5	0.360	1.7	3.2	0.119
Predator Total	9.0	8.7	0.881	15.5	6.1	0.001*

^{*} Significant at 0.05 level. ** Significant at 0.01 level.

Number, Percentage, and Fork Length of Predators from
Noname and Cliff Seine Hauls Containing Fry,

1986 and 1987

Predator Species	No. Examined	Length Range mm	i: . W/Fry 	Mean No. Per Stomach	Length Range w/Fry mm
		198	<u>16</u>		
Sculpin spp.	31	60-190	2 (6%)	1.0	75-85
Coho salmon	33	60-120	3 (9%)	1.0	90-100
Dolly Varden	40	110-130	8 (20%)	5.4	115-490
Sockeye	10	70-130	0	0	
Herring	0				
Tomcod	8	100-200	0	0	
Starry flounder	17	90-145	0	0	
		198	<u> 17</u>		
Sculpin spp.	66	95-145	2 (3%)	1.0	66
Coho salmon	90	60-150	7 (7%)	1.0	75-125
Dolly Varden	121	70-265	7 (6%)	1.6	110-130
Sockeye	18	65-155	0	0	
Herring	23	95-160	0	0	
Tomcod	41	108-240	1 (2%)	1.0	150
Starry flounder	0				

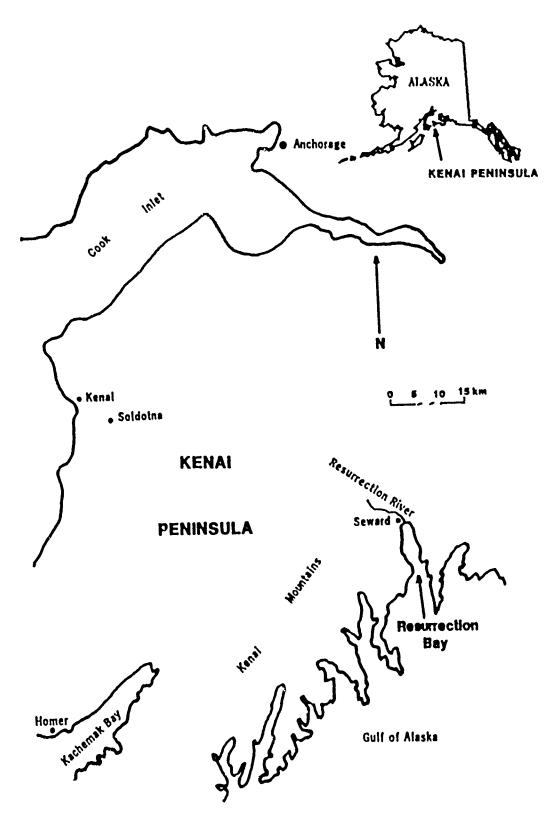


Figure 1. Location map showing Kenai Peninsula and general environments of Resurrection Bay, Alaska

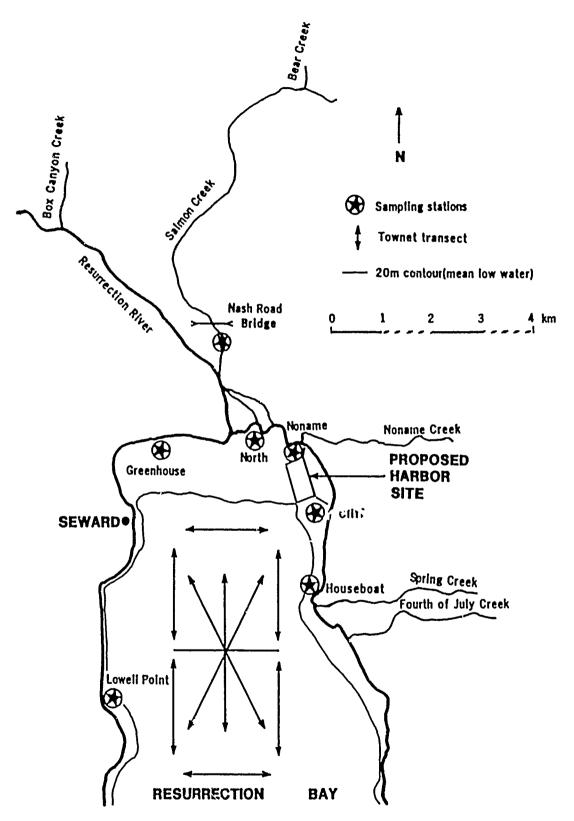


Figure 2. Study area and sampling stations, Resurrection Bay, Alaska, 1980 and 1987

a. Proposed harbor location, lower right, looking north at low tide. Nash Road is at middle right; braids of Resurrection River mouth are at center. North, Noname, and Cliff are visible

b. Lowell Point, looking south down Resurrection Bay

Figure 3. Proposed harbor site and estuarine seine sampling stations, Resurrection Bay, Alaska, 1986 and 1987

(Sheet 1 of 4)

c. Greenhouse, looking northwest along incoming tide toward Seward outskirts and upper Resurrection River

d. North, looking southwest at low tide
Figure 3. (Sheet 2 of 4)

e. Noname, looking west along shoreline, toward Seward and the east side of the promontory that flanks

Resurrection River mouth

f. Cliff, looking south down Resurrection Bay
Figure 3. (Sheet 3 of 4)

g. Houseboat, looking north at low tide toward proposed harbor area

Figure 3. (Sheet 4 of 4)

Figure 4. Ground otolith showing (a) major nuclei, (b) dorsal lobe, (c) principal radius, 135 deg from longitudinal axis of otolith

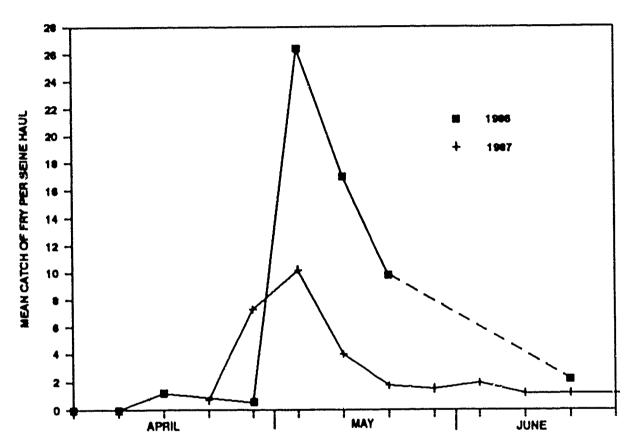
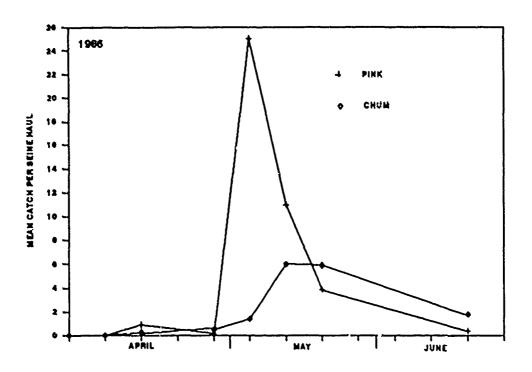



Figure 5. Mean catch per seine haul of salmon fry (pink and chum combined), all stations and tide stages combined, Resurrection Bay, Alaska, 1986 and 1987. Broken lines indicate that no samples were taken during that period

Figure 6. Mean catch per seine haul of salmon fry by station; dates and tide stages combined, Resurrection Bay, Alaska, 1986 and 1987

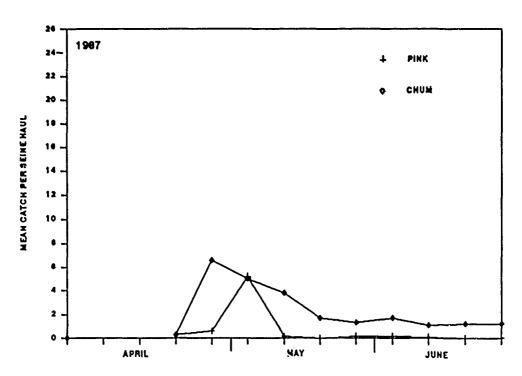
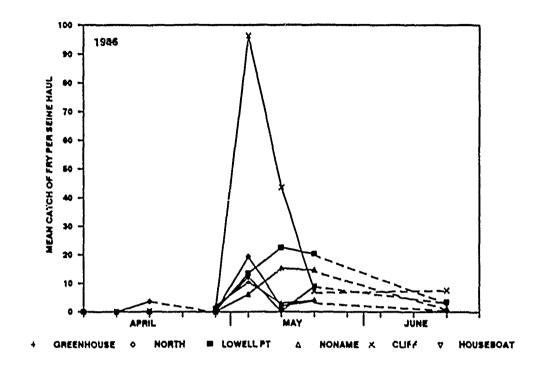



Figure 7. Mean catch per seine haul of pink and chum salmon, all stations and tide stages combined, Resurrection Bay,
Alaska, 1986 and 1987

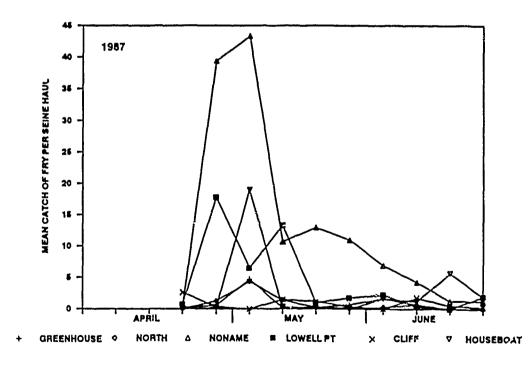
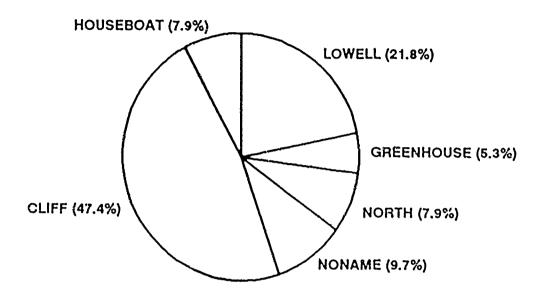



Figure 8. Mean catch per seine haul of combined pink and chum salmon fry by station and date, tide stages combined, Resurrection Bay, Alaska, 1986 and 1987

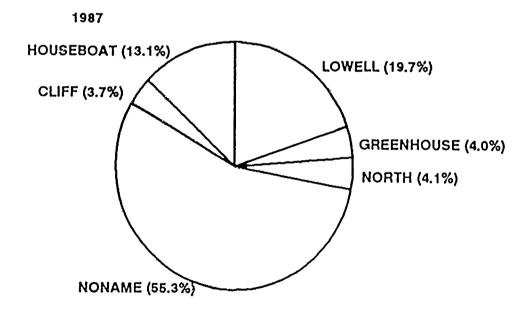
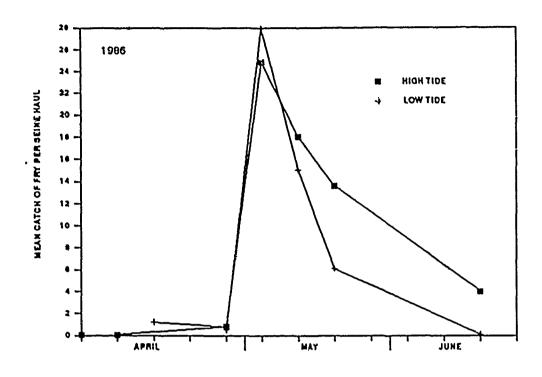



Figure 9. Percentage catch per seine haul of combined pink and chum salmon fry by station, all dates and tide stages combined, Resurrection Bay, Alaska, 1986 and 1987

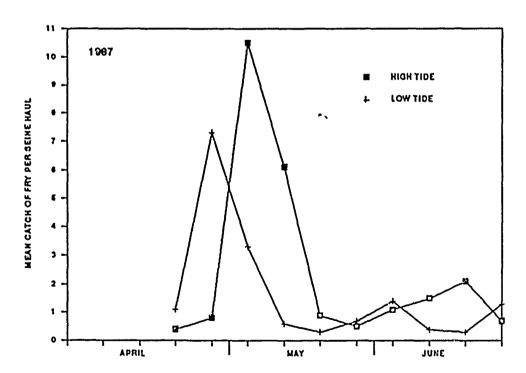
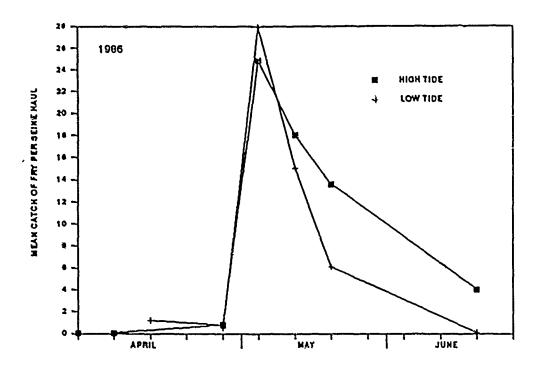



Figure 10. Mean catch per seine haul of combined pink and chum salmon fry by tide stage, all locations combined, Resurrection Bay, Alaska, 1986 and 1987

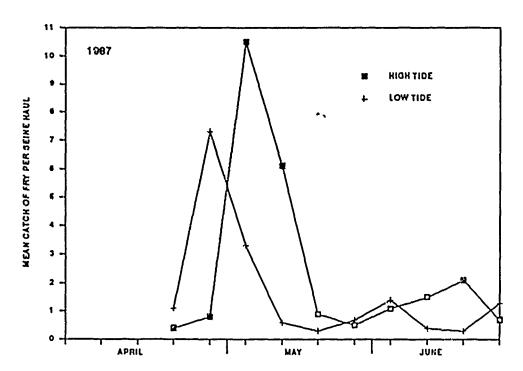
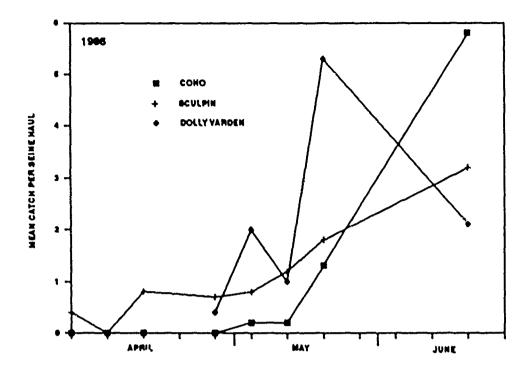



Figure 10. Mean catch per seine haul of combined pink and chum salmon fry by tide stage, all locations combined, Resurrection Bay, Alaska, 1986 and 1987

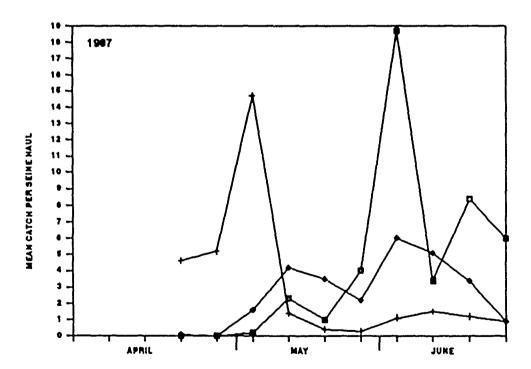


Figure 12. Mean catch per seine haul of coho salmon, sculpin, and Dolly Varden, all stations and tide stages combined, Resurrection Bay, Alaska, 1986 and 1987

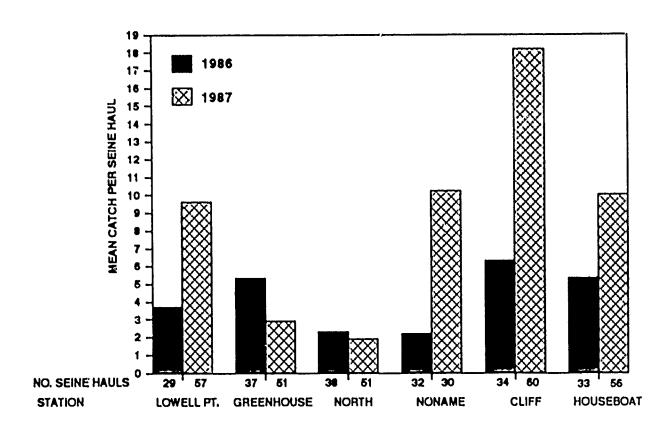


Figure 13. Mean catch per seine haul of combined predators (coho salmon, sculpin, and Dolly Varden) by station, dates and tide stages combined, Resurrection Bay, Alaska, 1986 and 1987

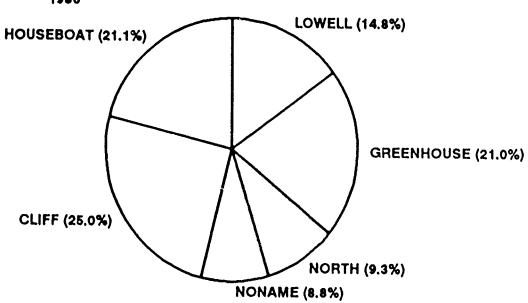
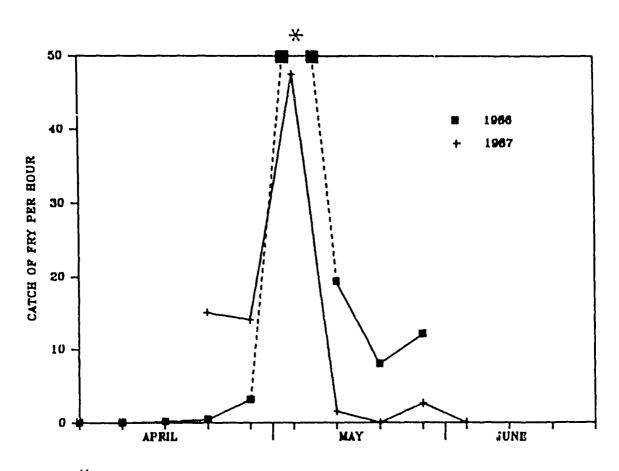



Figure 14. Percentage catch per seine haul of combined fry predators (coho salmon, sculpin, Dolly Varden) by station, all dates and tide stages combined, Resurrection Bay, Alaska, 1986 and 1987

X Sample was uncountable, and estimated at over 1,000 fry per hour

Figure 15. Mean catch per hour of pink and chum salmon fry (combined) from the Salmon Creek smolt net, lower Resurrection River area, Alaska, 1986 and 1987. Broken lines indicate that catch for one sample was extremely high and off scale for this graph

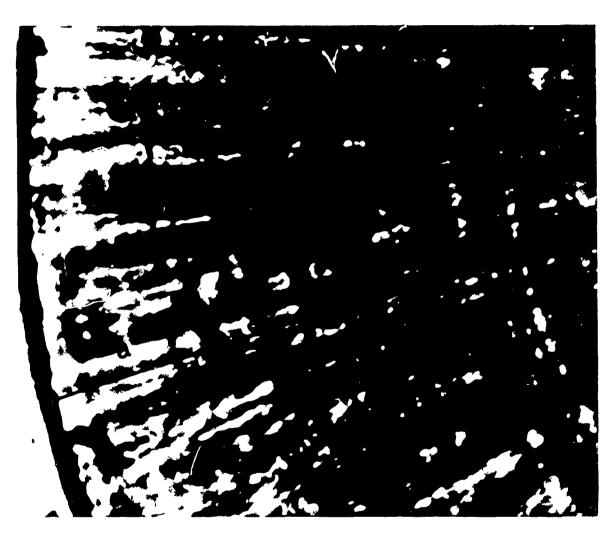


Figure 16. Ground otolith of a chum salmon fry from Salmon Creek showing the amorphous zone (a)

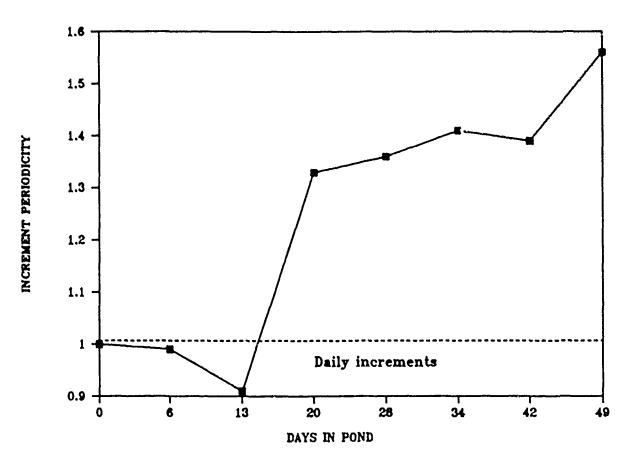


Figure 17. Otolith increment periodicity for known-age pink salmon reared in an experimental pond, plotted against residence time (true age)

Figure 18. Ground otolith of a 20-day-old, pond-reared pink salmon: (1) saltwater transfer check, (2) zone of daily growth increments of consistent intensity to day 13, (3) zone of subdaily growth increments of variable intensity

Figure 19. Ground otolith of Resurrection Bay chum salmon: (a) amorphous zone and (b) zone of daily growth increments

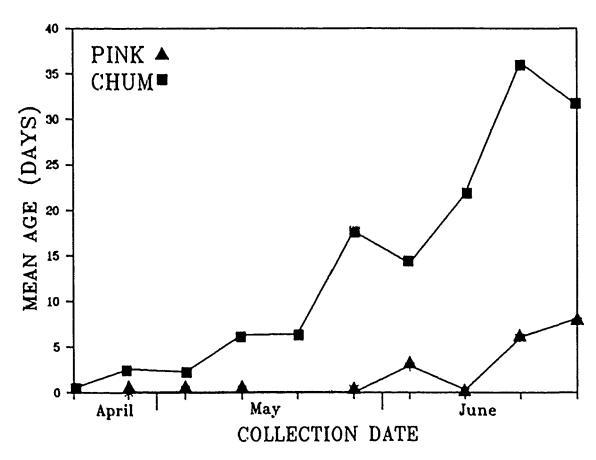


Figure 20. Mean ages (inferred from otolith analysis) of pink and chum salmon fry from Resurrection Bay, Alaska, by collection date, 1987

APPENDIX A: MEAN CATCHES OF SALMON FRY BY LOCATION, DATE, AN 21DE STAGE

Al

			APRIL 3-4	APRIL 9-10	APRIL 14-16	APRIL 25 - IMY 1	MY 6-9	PAY 12-24	MY 19-22	JUNE 18-20	
		TOTAL	004	0.00	0	-N.	23.8 70.5	14.7 59.7 18	6.74	F	7.5 39.1 102
		OAT									
1	u	HOUSEBOAT		oʻoʻu	O	น่ส์น	2.66 2.66 2.66 2.66	uáu	r.in	950	
=	1	۵. نځ ۳.	0	óóu	•	oʻoʻu	100.5 172.9	146.4	000	r,qn	
PINK SALIDH LOCATION	NICH TIDE	¥	•		0	óóu	r.n.n	7n	, : , :		N N N
1 2 2		n	0	oon	0	óóu	น่ล่น	ööu	óåu	áóu	-75
PIK	DATE	N	•	ó.ó	0	óóu	24.9	öön	óóu	a o n	
KDOWN OF ACROSS -	רסא בר הסא בר		oʻoʻu	•	0	óóu	rün.	o o n	12.7	NN	-2
BREAKDOWN OF ACROSS -		x, 50, x	<i>-</i> :	ï	ri .	÷	.	•	7.	•	TOTAL
		TOTAL	000	0	22.2		26.2 45.7	 	7.52	ากก	21.6
	T E	BOAT									
	IR. E DATE	HOUSEBOAT	•	O	0	น่ล่น	4.4 0.4.u	oʻoʻn	12.3	ม่น่น	-87
PINK SALION	OF SAM	คือ สุ	• •	Ø	óóu	- N 1111	64.9 64.9	öön	 	9	6.31 4.04 7.4
PINK POCAT	104 TIDE SE	NON AME	• •	ø	44.	o o u	7.8 V.8.	0	oon	ööu	2.7.=
	j j		• •	. •	7.7	ööu	37.7 65.2	•	000	ööu	22.5
AX C			• •	. •	444	öön	ก <u>.</u> กูหุก	0	n 4	o o u	2.5
1986 BREAKDOWN OF	LOWELL LOWELL			' •	0	0	25.7		0 % N	000	24.1
BREAKE	č	2		4	'n	÷	٠,	•	7.	•	TOTAL

	APRIL 3-4	APRIL 9-10	APRIL 14-10		MY 6-9		MY 19-22	JUNE 18-20	
107.k	004	0,0,0	۰,	2.1	0.4.5	7.4.2	19.3	24.2	102.5
LE DATE Houseboaț	 		0	 oon	242 	002 	4.2 1.2.2	~ m n	****
<u> </u>		óóu	o	ه فرم	váu vu	กหุก	42	044	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
- CHUM SALMOII - LOCATION - MEEK OF SAMPLE DATE HIGH TIDE NOMAME NOMAME : CLIFF : HOUSEBU	•	oʻoʻ-	0	ەۋم	07.7	44 444	5.6 5.4	00-	7.5.7
≂.1	o	o o u	9	óóv	ว่าร่อ	01.5	44. 44.	orn	44.5
CAUN LOC SATE AMERICANSE SAEENHOU	•	oʻoʻ-	0	000	i, in	บน oʻrin		น่สม	- K
BREAKDOWN OF ACROSS - BOWN - LOWELL R, SD, N :	óáu	o	ø	น่ล่น	óáu	óóu	22 22	047	27.5
B PEAKO AG K, SD, N		7.	ri .	;	.	•	,	.	101A
10T.K.	995	o	ววัย	4/2	772	32.2	7,7	992	
LE DATE HOUSEBOAT		o		Ľú.			ำ กุรุก	, dóu 	
IF SAMPLE DATE		. 0	้ำค่น	ء 	0.50	٥٥٢	، وٰهٰ،	n 0	
- CHUN SA - LOCATION - MEEK OF LOATIUE TH NOWAKE : NOWAKE	•	, σ	000	ပ်ဝုံ	, óóu	c	ه و و ا	u óóu	002
			7.0	oʻoʻ.	น น่ล่น		ห-	n oʻcin	1.6
CHUN LOC DATE PT GREENKOUSE INDRIT		, ,	, dó.	00	u iüu	, (n.4 	n óáu	: "
1986 ACROSS - DOWN - LOWELL : : :		, (· •	•	o vien	33.7	4 n	u éóv	28.8
1986 BREAKDOWH OF ACROSS DOWN LOWEL		2.	ń	÷	3.	ý	7.	•	TOTAL

	APRIL 20-24	APR IL 27-50	HAT 4-8	JAT 11-13	HAT 18-22	MAY 25-29	JUNE 1-5	JUKE 8-13	JUNE 13-19	JUNE 22-26	
¥101	2.5.7	<u> </u>	25.5	":"	-42	77.2	<u></u>		-4=	004	7.3
IOAT											** ** **
KOUSEBOAT	00'0	ööu	25. 25. 26.	oʻoʻu	oʻoʻn	oon	üáu	oʻoʻu	oʻoʻu	•	22.2
CL!FF	öáv	ööv	oon	222	i.i.	i.i.u	oon	i.au	oʻoʻu	oʻoʻu	772
MIGHTICE SE ATA 1 NOWANE 3. 4.	444	- 12 1.6.2	21.7	óóu	oon	iáu	üän	oon	444	úóu	2.5 2.1 2.0 2
COSE SORTH THOMATH	oʻoʻu	uidu	n'en	öön	oon	óóv	oʻoʻu	oon	oon	o	775
GREEMHOUSE 1 KOATE 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	น่ล่น	r iin	üüu	óóu	óóu	oon	ööu	ööv	öön	•	7.9.7.
בסקבור ביייי	น่ล่น	2.7. 2.7.	์ เน็น	óóu	ööu	u'éu	üäu	öön	oʻoʻu	0	7.5.5
x on x	<i>-</i> :	"	÷	;	.	•	7.	:	•	.0.	TOTAL
10 AT 01 AT	2.5.2	.::	-4 2.62	4.62	002	:: <u> </u>	44.	4 20	0.0.2	0.00	7.5
74.34 100 100 100 100 100 100 100 100 100 10	** ** **	** ** **		* * *						10 10 10	
PINK SALISH LOCATION DATE OATE IFF THOUSEBOAT S 6 TO	004	oʻoʻw	2.0	oon	oon	oon	oou	oon	ööu	e e u	7.00
11181 3		i,áu	oʻoʻu	. i.i.	ööv	oʻoʻu	ööv	üáu	ööv	oʻoʻu	77.5
지 35 " " 7	oon	nin	000	مأمن	ůóu	oon	0	oon	öön	0	-77
C C C C C C C C C C C C C C C C C C C		aon		oʻoʻu	óóu	ióu	0	oʻoʻu	oʻoʻu	0	222
ACROSS DONN LOWELL :		2.1	0-N	oon	oon	ion	Lan	ก่อน	ööv	oon	2.1
BREAKDOHN OF ACROSS - LONELL LCMELL	<u>-</u>	2.	ń	;	"	•	7.	40	6	<u>.</u>	TOTAL

		APR IL 20-24	APR IL 27-30	#-7 : 3d	NA. 11-19	KAY 18-22	MAY 25-29	JUNE 1-3	JUNE 8-13	JUKE 15-19	JUNE 22-26	
	TOTAL	425	16.5	7.7	9.4	6.7	6.2 1.8 1.8	NN = 00	97.8 7.7	4.4	0.4.4	10.0
	EOAT										** ** **	
	HOUSEEOAT	ø ö u	n.in	92.0	444	7 4 7	óóu	22. 22.	44 454		۵	2.7 5.1 26
ដ្ឋ	45°	óóu	óóv	oʻoʻu	0.00	-4	i.iu	oʻoʻu	Lun	01.7	iáu	3 0.
110E X ON A HE	;	óóu	23.23	22 22.2	 	12.0 2.10	10.4 4.4	7.4 0.4.0	มีนั้น	0.7.7	הַיִּה	16.0
HIGH TIDE SOUSE HORTH	n	óóu	oʻoʻu	202	0.7.0	440	óóv	i.i.u	-4 222	oʻoʻu	0	1.3
MIGI GREENHOUSE I NORTI	-4	ööu	üü	0.5.0	i.i.u	נייט	- oon	r.in	 	óóv	0	1.0
יי רסענהר רסענהר		000	óóv	 	26.5 45.6 5	222	r.en	. iiu	óóu	óóu	0	3.9
	K, 50, X	:	.:	ń	;	ň	:		.	.	.0	TOTAL
	TOTAL	2.2	22.53	- N	4.v.z	7.42	ม่นี้มี	46.	4.2	3.0°	2.2	3.9
_	BOAT						PO 84 86					
CHUH SALHOH LOGATION DATE IDE CL IFF	HOUSEBOAT	öön	ööv		i.i.u	óón	oʻoʻu	ı. in	oʻoʻu		00n	30
CHUM - CHUM TIDE TIDE TH CLIFF	-n	4.6	7.77	óóu	oon	r.en	óóu	óóu	000	oʻoʻu	óóv	200
1 1 1 E X	-ń	061	77.0	öön	242	oʻoʻu	ม่ล่น	0	oʻoʻu	oʻoʻu	0	24.1
522		oʻoʻu	oʻoʻn	4 N 0 N N	oon	oon	oʻoʻu	c	oʻoʻu	ööu	0	2.2
SSS OF LICE		oon	32.0 51.1	n4 non	u io u	rün	00n	0,0 N	nen	oon	09N	16.5
BREAKDON ACRC DC L	H, SO, N	÷		ń	;	ń	•		.	6	.0	10TAL

APPENDIX B: PERCENTAGE OF SALMON FRY WITH PLANKTONIC AND EPIBENTHIC PREY

Percentage of Salmon Fry with Planktonic and Epibenthic Prey*

		Pink		Chum							
Prey Grouping	Harbor Sta- tions	Nonharbor Stations	All Stations	Harbor Sta- tions	Nonharbor Stations	All Stations					
Ephibenthic											
Harpacticoid											
copepods	100	73	83	66	82	79					
Amphipods	11	0	4	50	ì8	25					
Ostracods	0	6	4	33	18	21					
Gravel	0	0	8	17	5	7					
Cumacea	0	0	0	0	18	14					
Total % with											
epibenthic prey	100	80	88	100	82	86					
Planktonic											
Calanoid copepods	66	66	66	83	50	57					
Dipterans	22	13	17	100	100	100					
Decapod zoea	0	40	25	0	18	14					
Daphnia spp.	0	6	4	0	5	4					
Nauplii	0	13	8	0	18	14					
Fish larvae	0	0	0	0	5	4					
Total % with											
planktonic prey	77	80	79	100	91	93					
Total % with both epibenthic and											
planktonic prey	77	60	67	100	95	96					

^{*} No. of fish examined: Harbor stations, 9; nonharbor stations, 15; all stations, 24; harbor stations, 6; nonharbor, 22; and all stations 28.

APPENDIX C: AGE AND LENGTH DATA FOR SALMON FRY

Table Cl

Mean Saltwater Ages (Inferred from Otolith Analysis) and Lengths
of Juvenile Pink Salmon Reared in an Experimental Saltwater

Pond, Alaska, 1987

	No. Days	Age,	days	Length			
Week	in Pond	Mean	SD	Mean	SD	No.	
5/13	6	6.0	0.5	38.1	1.7	10	
5/20	13	11.9	0.4	45.7	2.7	10	
5/27	20	26.5	2.3	53.6	2.0	10	
6/4	28	38.1	2.7	59.7	4.2	10	
6/10	34*	48.1	3.4	65.2	4.5	1)	
6/17	42	58.3	5.2	77.8	3.7	10	
6/23	49	76.7	4.6	85.6	3.2	10	

^{*} One chum salmon was collected on this day: age = 34 days, length = 78 mm.

Mean Saltwater Ages (Inferred from Otolith Analysis) of Juvenile Salmon Collected in Resurrection Bay, Alaska, 1987

at	SD			2.0) •					2.5			,				4.9	18.3	10.9	12.7	19.0	
Houseboat	Mean			0.5	}	d	0.0	7	:	0.8			,	•			2.5	21.1	36.6	36.1	20.6	
	Š			18		•	7	-	-1	20				1			∞	7	17	0,	58	
	SD		0.0		0.0	0.0	0.0			0.0		1.5	0.0	2.0	10.0			17.4			16.0	
Cliff	Mean		0.0		0.0	0.0	0.0			0.0		0.5	0.0	1.2	6.4	30.5		27.0			11.0	
	% %		7		7	7	7			18		6	-	m	9	-		0			29	
	SD			0.0	•	0.0				4.2			ر و ر	•		9.1		0.0			10.3	
Noname	Mean			0.0		0.0		0.9		1.7				:		18.1		0.0	30.5		7.2	
	No.			5		7		-		25			9 9	2		10		7	-		33	
	OS ^{XI}		0.0						0.0	ឮ		10.7	7.1							10.5		
North	Mean	Pink		0.0	0.0					0.0	Chum		6.2	10.3			39.5				5.9	
	No.			7 -	-					4			ئ د	2 4							20	
Se	SD			0.0						0.0			0.4	•			14.9				10.0	
eenhouse	Mean			0.0						0.0			ر. د. ،	•			12.8				7.1	
Gre	No.			7						11			2 5	1			9				20	
int	S			0.0		0.7	.			1.5			1.7	•		8.8	12.2			12.4	12.7	
Lowell Point	Mean			0.0		0.3	•			0.4			o. o	•		14.4	23.7			23.5	9.1	
Lo	Ş S			4 9		∞ ,	7			20			10	3		Ŋ	œ			'n	43	
	Week*			2 6	45	101	- ∞	و 5	3	A11		1	0 r) 4	Ŋ	9	7	ω	σ	01	All	

Corresponding dates: 1 = 4/20-24; 2 = 4/27-30; 3 = 5/4-8; 4 = 5/11-15; 5 = 5/18-22; 6 = 5/25-29; 7 = 6/1-5; 8 = 6/8-13; 9 = 6/15-19; 10 = 6/22-26.

Table C3

Mean Saltwater Ages (Inferred from Otolith Analysis)

and Lengths of Juvenile Salmon Collected in

Resurrection Bay, all Locations Combined,

Alaska, 1987

		Age, Days			Length, mm	
Week*	No.	<u>Mean</u>	SD	No.	Mean	SD
			Pink			
4/20-24	7	0.0	0.0	7	33.0	1.6
4/27-30	15	0.0	0.0	15	32.9	1.8
5/4-8	49	0.9	3.2	49	34.2	2.2
5/11-15	8	0.0	0.0	8	34.3	0.7
5/18-22						
5/25-29	12	0.2	0.6	12	34.3	1.6
6/1-5	3	2.2	3.8	3 2	35.7	1.2
6/8-13	3 2 1	0.0	0.0	2	34.0	0.0
6/15-19	I	6.0	0.0	1	36.0	0.0
6/22-26	1	7.5	0.0	1	37.0	0.0
All	98	0.7	2.6	98	34.0	2.0
			Chum			
4/20-24	9	0.5	1.5	9	38.0	1.7
4/27-30	28	2.6	5.2	28	39.1	2.4
5/4-8	64	2.3	6.3	64	39.8	4.8
5/11-15	7	6.4	7.1	7	42.7	7.9
5/18-22	6	6.4	10.0	6	39.8	2.7
5/25-29	16	17.7	9.2	17	44.2	4.0
6/1-5	23	14.2	14.8	24	41.9	6.5
6/8-13	18	21.7	18.2	18	47.5	9.1
6/15-19	18	36.3	10.7	18	54.6	7.1
6/22-26	14	31.6	13.7	14	52.4	6.6
A11	203*	11.8	15.5	205*	43.2	7.5

^{*} Ocoliths of two fish unusable for age analysis because of crystallization.

Table C4

Number of Growth Increments, Fork Length, and Saltwater (SW) Entry

Date for Pink Salmon Sampled from Seward Pond*

Fi		Date	Length	Date SW	Number of	Mean	Known
Num	ber	Collected	mm	Entry	Increments	Age	Age
SP	1	5/13	37	5/7	6L	6.0	6
SP	7	5/13	41	5/7	6R, 5L	5.5	6
SP	8	5/13	40	5/7	6L	6.0	6
SP	9	5/13	39	5/7	6R, 6L	6.0	6
SP	10	5/13	38	5/7	6R	6.0	6
SP	71	5/13	36	5/7	6R	6.0	6
SP	72	5/13	36	5/7	6L, 6R	6.0	6
SP	73	5/13	38	5/7	7L, 7R	7.0	6
SP	75	5/13	37	5/7	5L, 5R	5.0	6
SP	76	5/13	39	5/7	6R, 6L	6.0	6
SP	31	5/20	47	5/7	12L, 11R	11.5	13
SP	32	5/20	44	5/7	13R, 12L	12.5	13
SP	33	5/20	48	5/7	12R, 12L	12.0	13
SP	34	5/20	47	5/7	12R	12.0	13
SP	35	5/20	40	5/7	12L, 12R	12.0	13
SP	36	5/20	47	5/7	12L, 12R	12.0	13
SP	37	5/20	44	5/7	12R, 12L	12.0	13
SP	38	5/20	49	5/7	11R	11.0	13
SP	39	5/20	47	5/7	12L, 11R	11.5	13
SP	40	5/20	44	5/7	12L, 12R	12.0	13
SP	41	5/27	54	5/7	27R, 27L	27.0	20
SP	42	5/27	53	5/7	24R, 23L	23.5	20
SP	43	5/27	55	5/7	25L, 25R	25.0	20
SP	44	5/27	54	5/7	26L, 26R	26.0	20
SP	45	5/27	50	5/7	23R, 27L	25.0	20
SP	46	5/27	51	5/7	31L	31.0	20
SP	47	5/27	54	5/7	29R, 29L	29.0	20
SP	48	5/27	56	5/7	25L, 26R	25.5	20
SP	49	5/27	56	5/7	23R, 27L	25.0	20
SP	50	5/27	53	5/7	28L, 28R	28.0	20
SP	51	6/4	59	5/7	41L, 42R	41.5	28
SP	52	6/4	58	5/7	37R, 38L	37.5	28
SP	53	6/4	61	5/7	37R	37.0	28
SP	55	6/4	54	1/7	36R	36.0	28
SP	56	6/4	61	5/7	37R, 38L	37.5	28
SP	57	6/4	52	5/7	32L, 36R	34.0	28
SP	58	6/4	62	5/7	38R, 39L	38.5	28

^{*} Counts are for both left (L) and right (R) sagittae.

Table C4 (Concluded)

Fi	.sh	Date	Length	Date SW	Number of	Mean	Known
Nun	ber	Collected	mm	Entry	Increments	Age	Age
SP	60	6/4	61	5/7	38L, 37R	37.5	28
SP	93	6/4	66	5/7	37R, 38L	37.5	28
SP	96	6/4	63	5/7	43L, 44R	43.5	28
SP	61	6/10	59	5/7	44R, 43L	43.5	34
SP	62	6/10	63	5/7	55L	55.0	34
SP	64	6/10	65	5/7	48R, 49L	48.5	34
SP	66	6/10	71	5/7	49R, 50L	49.5	34
SP	67	6/10	60	5/7	42R, 49L	45.5	34
SP	68	6/10	69	5/7	52R, 48L	50.0	34
SP	69	6/10	60	5/7	52R, 44L	48.0	34
SP	70	6/10	70	5/7	50L	50.0	34
SP	99	6/10	66	5/7	49R, 42L	45.5	34
SP	100	6/10	69	5/7	45L, 45R	45.0	34
SP	21	6/17	82	5/7	53R, 54L	53.5	42
SP	22	6/17	73	5/7	62L	62.0	42
SP	23	6/17	75	5/7	63L	63.0	42
SP	26	6/17	78	5/7	63R	63.0	42
SP	27	6/17	78	5/7	67R	67.0	42
SP	28	6/17	71	5/7	52R, 60L	56.(1	42
SP	30	6/17	81	5/7	56L, 47R	51.5	42
SP	107	6/17	79	5/7	57R	57.0	42
SP	108	6/17	79	5/7	53R	53.0	42
SP	109	6/17	82	5/7	57R	57.0	42
SP	11	6/23	89	5/7	81R	81.0	49
SP	12	6/23	87	5/7	82L	82.0	49
SP	13	6/23	83	5/7	80L	80.0	49
SP	15	6/23	89	5/7	73R, 80L	76.5	49
SP	16	6/23	91	5/7	78R, 79L	78.5	49
SP	17	6/23	81	5/7	70R, 65L	67.5	49
SP	18	6/23	84	5/7	82L, 75R	78.5	49
SP	19	6/23	84	5/7	69R, 74L	71.5	49
SP	20	6/23	85	5/7	73L	73.0	49
SP	114	6/23	83	5/7	78R	78.0	49

Table C5

Ages Estimated as Counts of Daily Growth Increments and Fork Lengths of

Pink and Chum Salmon from Resurrection Bay*

Location	Num	sh ber	Date Collected	Length mm	Age Days	Sample Date	Mean Age	Standard Deviation
				Pink sa	lmon			
Greenhouse	G	1	4/28	33	OL	4/28	0	
	G	2	4/28	31	OL, OR	5/05	0	
	G	3	4/28	31	OR, OL			
	G	4	5/05	34	OL, OR			
	G	5	5/05	37	OR, OL			
	G	6	5/05	33	OR, OL			
	G	7	5/05	34	OR, OL			
	G	8	5/05	35	OR, OL			
	G	9	5/05	35	OL, OR			
	G	10	5/05	32	OL, OR			
	G	11	5/05	30(1)	OR			
Noname	NN	1	5/05	43	10R, 10L	4/28	0	
	NN	2	5/05	39	6R, 6L	5/05	2.17	4.93
	NN	3	5/05	37	3L, 3R	5/28	0	
	NN	4	5/05	34	OL, OR	-		
	NN	5	5/05	32	OL, OR			
	NN	6	5/28	35	OL, OR			
	NN	7	5/28	35	OL, OR			
	NN	8	4/28	35	OL, OR			
	NN	9	4/28	34	OL, OR			
	NN	10	4/28	34	OL, OR			
	NN	11	6/15	36	6L, 6R			
	NN	12	5/05	35	OL, OR			
	NN	13	5/05	35	OL, OR			
	NN	14	5/05	40	18L, 18R			
	NN	15	5/05	34	OL, OR			
	NN	16	5/05	33	OL, OR			
	NN	17	5/05	34	OL, OR			
	NN	18	5/05	35	OL, OR			
	NN	19	5/05	35	OL, OR			
	NN	20	5/05	32	OL, OR			
	אא	21	4/28	34	OL, OR			
	NN	22	4/28	34	OL, OR			

(Sheet 1 of 8)

^{*} Counts are for both left (L) and right (R) sagittae. When different, counts for left and right sagittae were averaged in the calculations for mean age at each date.

Table C5 (Continued)

Location		sh ber	Date Collected	Length mm	Ag Da	ge lys	Sample Date	Mean Age	Standard Deviation
Noname	NN	23	5/05	34	OL,	OR			
r. estante	NN	24	5/05	32	OL,				
	NN	25	5/05	33	OL,				
Houseboat	H	l	5/05	34	OR		5/05	0.47	2.00
	H	2	5/05	32	OR,	QL.	6/03	3.75	5.30
	H	3	5/05	33(1)	OL				
	H	4	6/03	37	OL,	OR			
	H	5	5/05	32	OL				
	H	6	5/05	34	OL,	OR			
	H	7	5/05	33	OR				
	H	8	5/05	32	OL,				
	H	9	5/05	34	OL,				
	H	10	5/05	34	OL,				
	H	11	6/23	37	8L,				
	H	12	5/05	37	OR,				
	H	13	5/05	34	8L,				
	H	14	5/05	33	OL,				
	H	15	5/05	33	OL,				
	Н	16	5/05	34	OR,				
	H	17	5/05	34	OR,				
	H	18	5/95	35	OR,				
	H H	19 20	5/05 5/05	32 33	OR, OR,				
A2 1 F F								•	
Cliff	C	1	4/20	33	OR,	OL	4/20	0	
	C	2	4/20	33	OR	0 13	5/11	0	
	C	3	4/20	31	OL,	UK	5/13	0	
	C	4	5/11	34 (1)	OR	Δħ	5/27	0	
	C	5	5/11	33	OL,	UK	6/08	0 0	
	C	6 7	5/11 5/13	35(1) 34	OR OL,	ΔÞ	6/09	U	
	C	8	5/27	35	OL,				
	C	9	5/27	36	OL,				
	C	10	6/09	34	OL,				
	C	11	5/11	35	OL,				
	Č	12	5/11	34	OR,	OK			
	C	13	5/11	34	OL,	OB			
	Č	14	4/20	32	OR,				
	Č	15	4/20	36	OL,				
	Č	16	4/20	34	OL,				
	Č	17	4/20	32	OL,				
	Č	18	6/08	34	OR,				

(Sheet 2 of 8)

Table C5 (Continued)

North North N 1 4/27 30 0 4/27 0 N 2 4/28 32 0 4/28 0 N 3 5/06 36 OL, OR 5/06 0 N 4 5/12 35 0 5/12 0 Lowell L 1 4/28 31 OL 4/27 0 Lowell L 2 4/27 31 OL, OR 5/06 0 L 3 4/27 36 OL, OR 5/05 0 L 4 5/04 34(1) OR 5/05 0 L 5 5/04 35 OL, OR 5/05 0 L 6 5/04 33 OL, OR 5/05 0 L 6 5/04 33 OL, OR 5/05 0 L 6 5/04 33 OL, OR 5/05 0 L 7 5/04 33 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR C 1 15 5/27 36 OL, OR L 11 6/27 31 OL, OR L 11 6/28 32 OR, OL L 17 4/27 34 OL, OR L 19 4/28 32 OR, OL L 17 4/28 32 OR, OL C 1 15 5/05 37 OL, OR C 2 5/05 36 OL C 3 5/05 37 OL, OR 5/05 1.05 2.81 C 4 5/05 39 IL, IR 5/27 14.40 8.76 C 5 5/05 40 OR, OL 6/03 22.56 11.96 C 6 4/28 41 OR 6/23 23.50 12.44 C C 7 4/28 39 OR, OL C 8 4/28 38 OL, OR C 9 4/28 39 OR, OL C 1 1 6/23 51 21L, 21R C 1 14 6/23 44 9L, 10R C 1 13 6/23 60 44L, 42R C 1 14 6/23 46 18L C 1 15 6/23 53 26L	Location	F1: Numl		Date Collected	Length mm	Age Days	Sample Date	Mean Age	Standard Deviation
N 2 4/28 32 0 4/28 0 N 3 5/06 36 0L, OR 5/06 0 N 4 5/12 35 0 5/12 0 Lowell L 1 4/28 31 0L 4/27 0 Lowell L 2 4/27 31 0L, OR 4/28 0 L 3 4/27 36 0L, OR 5/04 0 L 4 5/04 34(1) OR 5/05 0 L 5 5/04 35 0L, OR 5/05 0 L 6 5/04 33 0L, OR 5/27 1 1.41 L 7 5/04 33 0L, OR 5/27 1 1.41 L 7 5/04 33 0L, OR 6/03 3.25 4.59 L 8 5/04 35 0L, OR L 9 5/05 34 0L, OR L 10 4/27 32 0L, OR L 11 6/03 35 0L, OR L 12 6/03 35 0L, OR L 13 5/27 36 0L, OR L 14 5/27 36 2L L 15 4/27 35 0R, OL L 18 4/28 34 0L, OR L 19 4/28 32 0R, OL L 19 4/28 33 0R, OL C 1 5/05 37 0L, OR 5/05 1.05 2.81 C 4 5/05 39 1L, 1R 5/27 1.40 8.76 C 5 5/05 40 0R, OL 6/03 22.56 11.96 C 6 4/28 41 0R 6/23 23.50 12.44 C C 7 4/28 39 0R, OL C 8 4/28 38 0L, 0R C 10 4/28 39 0R, OL C 11 6/23 51 21L, 21R C C 12 6/23 44 9L, 10R C C 14 6/23 46 18L C C 14 6/23 60 44L, 42R C C 14 6/23 60 44L, 4	North	N	1	4/27	30	0	4/27		
N									
N									
Point L 2 4/27 36 OL, OR 4/28 0 L 3 4/27 36 OL, OR 5/04 0 L 4 5/04 34(1) OR 5/05 0 L 5 5/04 35 OL, OR 5/05 0 L 6 5/04 33 OL, OR 5/27 1 1.41 L 7 5/04 33 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 BL, 5R L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 19 4/28 32 OR, OL C 1 19 4/28 32 OR, OL C 1 2 5/05 36 OL C 2 5/05 36 OL C 2 5/05 36 OL C 3 5/05 37 OL, OR 5/05 1.05 2.81 C 4 5/05 39 1L, 1R 5/27 14.40 8.76 C 5 5/05 40 OR, OL C 5 5/05 40 OR, OL C 6 4/28 41 OR C 6/23 23.50 12.44 C 7 4/28 39 OR, OL C 8 4/28 38 OL, OR C 9 4/28 39 OR, OL C 1 6 4/28 39 OR, OL C 1 7 4/28 39 OR, OL C 1 8 4/28 38 OL, OR C 1 9 4/28 39 OR, OL C 1 1 6/23 51 21L, 21R C 1 1 6/23 51 21L, 21R C 1 1 6/23 51 21L, 21R C 1 12 6/23 44 9L, 1OR C 1 13 6/23 60 44L, 42R C 1 14 6/23 60 44L, 42R									
1. 3 4/27 36 OL, GR 5/04 O 1. 4 5/04 34(1) OR 5/05 O 1. 5 5/04 35 OL, OR 5/05 O 1. 6 5/04 33 OL, OR 5/27 1 1.41 1. 7 5/04 33 OL, OR 6/03 3.25 4.59 1. 8 5/04 35 OL, OR 6/03 3.25 4.59 1. 8 5/04 35 OL, OR 1. 9 5/05 34 OL, OR 1. 10 4/27 32 OL, OR 1. 11 6/03 35 OL, OR 1. 12 6/03 35 OL, OR 1. 13 5/27 36 OL, OR 1. 14 5/27 36 OL, OR 1. 14 5/27 36 OL, OR 1. 15 4/27 35 OR, OL 1. 16 4/27 31 OL, OR 1. 17 4/27 34 OL, OR 1. 18 4/28 34 OL, OR 1. 19 4/28 32 OR, OL 1. 19 4/28 32 OR, OL 1. 19 4/28 33 OR, OL 1. 19 5/05 37 OL, OR 5/05 1.05 2.81 1. 10 5/05 39 1L, 1R 5/27 14.40 8.76 1. 1 5/05 39 1L, 1R 5/27 14.40 8.76 1. 1 5/05 39 OR, OL 1. 1 5/05 40 OR, OL 6/03 22.56 11.96 1. 1 7 4/28 39 OR, OL 1. 1 7 4/28 39 OR, OL 1. 1 7 4/28 39 OR, OL 1. 1 1 6/23 51 21L, 21R 1. 1 1 6/23 51 21L, 21R 1. 1 1 6/23 51 21L, 21R 1. 1 1 6/23 60 44L, 42R 1. 1 1 1.41 1. 1.41									
L 4 5/04 34(1) OR 5/05 0 L 5 5/04 35 OL, OR 5/05 0 L 6 5/04 33 OL, OR 5/27 1 1.41 L 7 5/04 33 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 OL, OR L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL C 1 18 4/28 32 OR, OL C 2 5/05 36 OL C 3 5/05 37 OL, OR C 3 5/05 37 OL, OR C 4 5/05 39 1L, 1R 5/27 14.40 8.76 C 5 5/05 40 OR, OL C 6 4/28 41 OR, OL C 7 4/28 39 OR, OL C 8 4/28 38 OL, OR C 9 4/28 39 OR, OL C 1 1 6/23 39 OL, OR C 1 1 6/23 51 21L, 21R C 1 1 6/23 51 21L, 21R C 1 1 6/23 51 21L, 21R C 1 1 6/23 60 44L, 42R C 1 13 6/23 60 44L, 42R C 1 14 6/23 46 18L	Point					-			
L 5 5/04 35 OL, OR 5/05 O L 6 5/04 33 OL, OR 5/27 1 1.41 L 7 5/04 33 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 SL, 5R L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 19 4/28 32 OR, OL C 2 5/05 36 OL C 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 39 OR, OL C 8 4/28 39 OR, OL C 9 4/28 39 OR, OL C 10 4/28 39 OR, OL C 11 6/23 51 21L, 21R C 11 6/23 51 21L, 21R C 11 6/23 60 44L, 42R C 11 6/23 46 18L			3						
L 6 5/04 33 OL, OR 5/27 l 1.41 L 7 5/04 33 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 OL, OR L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 19 4/28 33 OR, OL C 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 10 4/28 39 OR, OL CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 66 044L, 42R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 66 044L, 42R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 66 044L, 42R CL 11 6/23 66 044L, 42R CL 11 6/23 66 044L, 42R CL 11 6/23 60 44L, 42R CL 11 6/23 60 44L, 42R									
L 7 5/04 33 OL, OR 6/03 3.25 4.59 L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 OL, OR L 12 6/03 35 OL, OR L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 19 4/28 32 OR, OL C 20 4/28 33 OR, OL C 3 5/05 36 OL C 4 5/05 36 OL C 4 5/05 39 IL, IR 5/27 I4.40 8.76 C 5 5/05 40 OR, OL 6/03 22.56 I1.96 C 6 4/28 41 OR 6/23 23.50 I2.44 C 7 4/28 39 OR, OL C 8 4/28 38 OL, OR C 9 4/28 39 OR, OL C 1 6 6/23 51 21L, 21R C 1 1 6/23 51 21L, 21R C 1 1 6/23 60 44L, 42R C 1 14 6/23 60 44L, 42R			5						
L 8 5/04 35 OL, OR L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 OL, OR L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CL 1 5/05 41 OR, 1L 4/28 O.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 OR, OL CL 10 6/23 51 21L, 21R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 1OR CL 13 6/23 60 44L, 42R CL 14 6/23 60 44L, 42R CL 13 6/23 60 44L, 42R CL 14 6/23 60 44L, 42R CL 14 6/23 60 44L, 42R CL 13 6/23 60 44L, 42R								-	
L 9 5/05 34 OL, OR L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 OL, OR L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 19 4/28 32 OR, OL L 19 4/28 32 OR, OL CL 2 5/05 36 OL CL 2 5/05 36 OL CL 3 5/05 37 OL, OR CL 4 5/05 39 IL, IR 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 38 OL, OR CL 9 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 10 4/28 38 OL, OR CL 11 6/23 51 21L, 21R CL 11 6/23 60 44L, 42R							6/03	3.25	4.59
L 10 4/27 32 OL, OR L 11 6/03 35 OL, OR L 12 6/03 35 SL, 5R L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OL CL 2 5/05 36 OL CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 39 OR, OL CL 7 4/28 39 OR, OL CL 8 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 8 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 10 6/23 51 21L, 21R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 13 6/23 60 44L, 42R CL 11 6/23 60 44L, 42R									
L 11 6/03 35 OL, OR L 12 6/03 35 8L, 5R L 13 5/27 36 OL, OR L 14 5/27 36 OL, OR L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum solmon C1. 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 OR, OL CL 10 4/28 39 OR, OL CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 60 44L, 42R									
L 12 6/03 35 81, 5R L 13 5/27 36 OL, OR L 14 5/27 36 2L L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OL CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 10 4/28 39 OR, OL CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 60 44L, 42R									
L 13 5/27 36 OL, OR L 14 5/27 36 2L L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CI. 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 9 4/28 39 OL, OR CL 9 4/28 39 OL, OR CL 9 4/28 39 OL, OR CL 10 4/28 38 OL, OR CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
L 14 5/27 36 2L L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OL Chum salmon C1. 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 38 OL, OR CL 9 4/28 38 OL, OR CL 9 4/28 39 OR, OL CL 10 4/28 38 OL, 2R CL 10 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
L 15 4/27 35 OR, OL L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CL 1 5/05 41 OR, 1L 4/28 O.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 10 4/28 38 OL, OR CL 9 4/28 39 OL, OR CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
L 16 4/27 31 OL, OR L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 9 4/28 39 OR, OL CL 10 4/28 38 OL, OR CL 9 4/28 39 OL, 2R CL 10 4/28 38 OL, OR CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
L 17 4/27 34 OL, OR L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CL 1 5/05 41 OR, 1L 4/28 O.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 38 OL, OR CL 9 4/28 39 OR, OL CL 10 4/28 38 OL, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
L 18 4/28 34 OL, OR L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CI. 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 39 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
L 19 4/28 32 OR, OL L 20 4/28 33 OR, OI. Chum salmon CI. 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 39 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L						•			
Chum salmon CL 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 0 CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, OR CL 9 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
Chum salmon CI. 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 0 CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 1 5/05 41 OR, 1L 4/28 0.80 1.62 CL 2 5/05 36 OL 5/04 0 CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 OL, OR CL 9 4/28 39 OL, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L		L	20	4/28	33	OR, OI,			
CL 2 5/05 36 OL 5/04 O CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 39 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L					Chum sa	lmon			
CL 3 5/05 37 OL, OR 5/05 1.05 2.81 CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 39 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									1.62
CL 4 5/05 39 1L, 1R 5/27 14.40 8.76 CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 5 5/05 40 OR, OL 6/03 22.56 11.96 CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 6 4/28 41 OR 6/23 23.50 12.44 CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 7 4/28 39 OR, OL CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L						•			
CL 8 4/28 38 OL, OR CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L							6/23	23.50	12.44
CL 9 4/28 39 2L, 2R CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 10 4/28 38 OL, 2R CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 11 6/23 51 21L, 21R CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 12 6/23 44 9L, 10R CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 13 6/23 60 44L, 42R CL 14 6/23 46 18L									
CL 14 6/23 46 18L						•			
CL 15 6/23 53 26L									
		CL	15	6/23	53	26L			

(Sheet 3 of 8)

Table C5 (Continued)

	Fish	Date	Length	Age	Sample	Mean	Standard
Location	Number	Collected	mm	Days	Date	Age	Deviation
Lowell	CL 16	5/27	45	23R, 23L			
Point	CL 17	5/27	43	6R, 6L			
	CL 18	5/27	43	23L			
	CL 19	5/27	40	5R, 51.			
	CL 20	6/03	41	12R, 12L			
	CL 21	6/03	55	48R, 48L			
	CL 22	6/03	41	17L, 18R			
	CL 23	6/03	43	24L, 23R			
	CL 24	6/03	54	25R, 26L			
	CI. 25	4/28	39	OL, OR			
	CL 26	4/28	39	OL, OR			
	CL 27	4/28	36	5L, 5R			
	CL 28	4/28	37	OL, OR			
	CL 29	4/28	39	OL, OR			
	Cr 30	5/04	40	OL, OR			
	CL 31	5/04	39	OL, OR			
	CL 32	5/04	36	OL, OR			
	CL 33	5/04	38	OL, OR			
	CL 34	5/04	36	OL			
	CL 35	5/05	38	OL, UR			
	CL 36	5/05	37	OR, OL			
	CL 37	5/05	38	OR, OL			
	CL 38	5/05	40	OR, OL			
	CL 39	5/05	37	OL, OR			
	CL 40	5/27	43	15L, 15R			
	CL 41	6/03	50	35R, 33L			
	CL 42	6/03	40	17R, 16L			
	CL 43	6/03	48	Crystal			
	CL 44	6/03	42	13R			
Noname	CNN 1	4/28	39	OL, OR			
	CNN 2	4/28	39	OL, OR	4/28	2.30	3.86
	CNN 3	4/28	40	5L, 5R	5/05	0.25	0.42
	CNN 4	4/28	39	OL, OR	5/28	17.95	9.00
	CNN 5	4/28	43	9L, 9R	6/15	10.17	17.61
	cnn 6	4/28	36	OL, OR			
	CNN 7	4/28	37	OL, OR			
	CNN 8	4/28	39	OL, OR			
	CNN 9	4/28	38	OL, OR			
	CNN 10	4/28	41	9L, 9R			
	CNH 11	5/28	45	21R, 21L			
	CNN 12	5/28	48	24R, 23L			
	CNN 13	5/28	39	3L, 3R			
	CNN 14	5/28	44	23R, 24L			

(Sheet 4 of 8)

Table C5 (Continued)

Location	Fish Number	Date Collected	Length mm	Age Days	Sample Date	Mean Age	Standard Deviation
Noname	CNN 15	5/28	49	23L, 24R			
	CNN 16	5/28	44	16R, 16L			
	CNN 17	5/28	44	23R, 24L			
	CNN 18	5/28	42	22L, 22R			
	CNN 19	5/28	46	24L, 25R			
	CNN 20	5/28	38	OR, OL			
	CNN 21	6/15	46	31L, 30R			
	CNN 22	6/15	40	OL, OR			
	CNN 23	6/15	39	OL, OR			
	CNN 24	5/05	40	OR, IL			
	CNN 25	5/05	40	1L, 1R			
	CNN 26	5/05	40	OL, OR			
	CNN 27	5/05	31	OL, OR			
	CNN 28	5/05	36	OL, OR			
	CNN 29	5/05	35	lL, IR			
	CNN 30	5/05	40	OR, OL			
	CNN 31	5/05	39	OL, OR			
	CNN 32	5/05	41	OR, OL			
	CHN 33	5/05	40	OR, OL			
Houseboat	CH 1	5/04	32	OL, OR	5/04	0.29	0.76
	CH 2	5/04	40	2R, 2I.	5/05	7.80	12.79
	CH 3	5/04	39	OR, OL	6/03	2.86	5.18
	CH 4	5/04	36	OR, OL	6/09	21.14	18.34
	CH 5	5/04	36	OR, OL	6/15	36.59	10.88
	CH 6	5/04	35 36	OR, OL	6/23	36.06	12.74
	CR 7	5/Q4	36 60	OL			
	CH 8 CH 9	6/15 6/15	60 55	40L, 41R			
	CH 9 CH 10	6/15 6/15	55 52	36R, 35L 30R, 30L			
	CH 11	6/15	35				
	CH 12	6/15	54	2L, 2R 34L, 33R			
	CH 12	6/15	53	33R, 33L			
	CH 14	6/15	62	43R, 43L			
	CH 15	6/15	59	47L, 43R			
	CH 16	6/03	42	13R			
	CH 17	6/03	40	7R, 7L			
	CH 18	6/03	40	OL, OR			
	CH 19	6/03	37	OL, OR			
	CH 20	6/03	38	OL, OR			
	CH 21	6/03	37	OL, OR			
	CH 22	6/03	40	OL, OR			
	CH 23	6/23	50	29R, 29L			

(Sheet 5 of 8)

Table C5 (Continued)

Location	Fish Number	Date Collected	Length	Agn Days	Sample Date	Mean Age	Standard Deviation
Houseboat	CH 24	6/23	55				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HOUSEDOAL	CH 25	6/23	60	50L, 51R 48L, 48R			
	CH 26	6/23	63	48R, 49L			
	CH 27	6/23	46	24R, 23L			
	CH 28	6/23	55	36R, 36L			
	CH 29	6/23	41	13L, 12R			
	CH 30	6/23	57	41R, 42L			
	CH 31	6/23	53	35R, 35L			
	CH 32	6/15	57	42R, 43L			
	CH 33	6/15	62	51L, 49R			
	CH 34	6/15	52	39R, 39L			
	CH 3,5	6/15	56	43R, 44I			
	CH 36	6/15	52	37L, 38R			
	CH 37	6/09	52	37L, 37R			
	CH 38	6/09	54	39R, 36L			
	CII 39	6/09	51	33R, 34L			
	CH 40	6/09	39	OR, OL			
	CH 41	6/09	37	5L, 5R			
	CH 42	6/09	39	OL, OR			
	CH 43	6/09	49	35L, 35R			
	CH 44	6/05	37	OL, OR			
	CH 45	5/05	38	4L, 4R			
	CH 46	5/05 5/05	38 36	lL, lR			
	CH 47	5/05 5/05	36 30	OL, OR			
	CH 48 CH 49	5/05 5/05	39 37	3R, 3L OL, OR			
	CH 50	5/05	51	38R, 38L			
	CH 51	5/05	37	OL, OR			
	CH 52	5/05	48	23L, 23K			
	CH 53	5/05	38	9R, 9L			
	CH 54	5/05	36	OL, OR			
	CH 55	6/15	61	43R, 43L			
	CH 56	6/15	45	25L, 25R			
	CH 57	6/15	60	35R			
	CH 58	6/15	61	44L, 44R			
Greenhouse	OG 1	4/28	39	5R, 5L	4/28	5.25	0.35
	OG 2	4/28	41	5R, 6L	5/05	4.58	6.77
	OG 3	5/05	44	19R, 18L	6/03	12.75	14.91
	QG 4	5/05	43	17L, 17R			
	OG 5	5/05	38	OR, OL			
	OG 6	5/05	42	10L, 10R			
	OG 7	5/05	40	OL, 1R			

(Sheet 6 of 8)

Table C5 (Continued)

Location	Fish Number	Date Collected	Length	Age Days	Sample Date	Mean Age	Standard Deviation
							201207111
	OG 8 OG 9	5/05 5/05	41 41	2L			
	0G 10	5/05 5/05	37	4L, 4R			
	0G 11	5/05	3 <i>7</i> 38	OL, OR OL, OR			
	0G 12	5/05	39	lL, lR			
	0G 13	6/03	44	21R, 22L			
	OG 14	6/03	29	OL, OR			
	OG 15	6/03	51	35R, 35L			
	OG 16	5/05	38	OL, OR			
	OG 17	5/05	40	2R, 2L			
	OG 18	6/03	40	20R, 20L			
	OG 19	6/03	30	OL, OR			
	OG 20	6/03	39	OR, OL			
North	CN 1	4/27	40	1L, 1R	4/27	6.20	10.70
	CN 2	4/27	40	OR	5/06	0.65	1.11
	CN 3	4/27	47	24R, 26L	5/12	10.25	7.14
	CN 4	4/2?	40	5R, 5L	6/03	39.50	
	CN 5	4/27	39	OR, OI,			
	cn 6	5/06	39	OR, OL			
	CN 7	5/06	43	3R, 4L			
	CN 8	5/06	40	OL, OR			
	CN 9	5/06	41	lL, lR			
	CN 10	5/06	40	lL, lR			
	CN 11	5/0_	35	lL, lR			
	CN 12	5/06	42	OL, OR			
	CN 13	5/06	40	OL, OR			
	CN 14	5/06	39	OL, OR			
	CN 15	5/06	37	OL, OR			
	CN 16	5/12	40	2L, 2R			
	CN 17 CN 18	5/12 5/12	42	8R, 8L			
	CK 18	5/12 5/12	42 60	12L, 12R			
	CN 19	5/26	44	19L, 19R			
	CN 21	6/03	47	Crystal 36R, 431.			
Cliff	CC 1	4/20	38	OL, OR	4/20	0.50	1.50
	CC 2	4/20	38	OL, OR	4/27	0	
	CC 3	4/20	39	OL, OR	5/18	0	
	CC 4	4/20	37	OL, OR	5/19	19.25	2.47
	CC 5	4/20	39	OL, OR	5/27	30.50	
	CC 6	4/27	34	OL, OR	6/08	40.75	7.63
	CC 7	5/18	40	OL, OR	6/09	16.00	14.93

(Sheet 7 of 8)

Table C5 (Concluded)

Location	Fish Number	Date Collected	Length mm	Age Days	Sample Date	Mean Age	Standard Deviation
	CC 8	5/18	38	OL, OR			
	CC 9	5/18	38	OL, OR			
	CC 10	5/18	37	OL, OR			
	CC 11	5/27	55	30L, 31R			
	CC 12	6/09	43	23R, 23L			
	CC 13	6/09	39	OL, OR			
	CC 14	6/09	54	31R, 32L			
	CC 15	6/09	39	OL, OR			
	CC 16	6/08	61	42R, 43L			
	CC 17	6/08	49	30L, 29R			
	CC 18	6/08	61	46R, 45L			
	CC 19	6/08	66	45L, 46R			
	CC 20	5/11	36	CL, OR			
	CC 21	5/11	41	4L, 3R			
	CC 22	4/20	37	OL, OR			
	CC 23	4/20	41	5L, 4R			
	CC 24	4/20	38	OL, OR			
	CC 25	4/20	35	OL, OR			
	CC 26	5/11	38	OL, OR			
	CC 27	5/19	44	18R, 12L			
	CC 28	5/19	42	21R, 21L			
	CC 29	6/09	43	26L, 25R			

APPENDIX D: WATER QUALITY DATA

Table D1 Water Quality Data Collected in Resurrection Ecy by Station, 1926

23.6 8.1 2.3 8.1 3.4 8.1 3.5 8	Hydrolab Di	Hydrola	Hydrola	Hvdrola	Hydrola	Hrdrolab	Lisso	lved			Current Meter	Keter		Transm	Transmissometer Nephel-	Nephel-
Lovell Pt. Lov In — — — — — — — — — — — — — — — — — —		1de	11 shore		Depth	Tenperature C	퓑	Oxygen ng/L	Conductivity	Depth	Speed	degrees	Depth	Transmission	Ometer Z	Scale
0ff 4/18 High in 4/21 Off 4/21 Off 4/23 Off 4/23 Off 4/22 Off 4/22 Off 4/22 Off 4/22 Off 4/22		70	In			1	1	l	1	1	ł	ł	}	1	1	
High in 4/21 Off 4/21 Off 4/23 Off 4/23 Off 4/23 Off 4/22 Off 4/22 Low in 4/23 Off 4/22			0££				8.2	9.11	9.72	į	1	1	22.5	0.80	0.000	100
High in 4/21 Off 4/21 Off 4/23 Off 4/23 Off 4/23 Off 4/22 Off 4/22 Off 4/22 Off 4/22						•	8.3 3.3	12.3	٠.	i	1	1	0.1	0.65	0.001	100
High in 4/21 Off 4/21 Off 4/21 Off 4/23 Off 4/23 Off 4/22 Off 4/22 Off 4/22 Off 4/22 Off 4/22						•	8.3	12.4	6.97	1	1	i	0	0.92	0.005	100
Off 4/21 Touse Lov In 4/23 Off 4/23 High In 4/22 Off 4/22 Off 4/22 Off 4/22	×	18h	In	4/21			8.2	13.1	47.6	15.8	0.40	255	0.21	90.0	0	8
100 of 6 4/21 100 in 4/23 066 4/23 066 4/22 066 4/22 066 4/22 066 4/22 066 4/23						ŀ	i	ŀ	:	7.9	0.25	230	7.2	83.0	0	901
0ff 4/21 10use Lov In 4/23 0ff 4/23 High In 4/22 10v In 4/22 0ff 4/22						4.3	0.5	12.5	46.7	0	6.20	255	0	82.0	c	001
10use Low In 4/23 0ff 4/23 High In 4/22 0ff 4/22 0ff 4/23 0ff 4/23			330	4/51			7.9	10.4	7.8	2.1	0.00	۲5	5.0	75.0	0.03	8
10use Low in 4/23 0ff 4/23 High in 4/22 0ff 4/22 0ff 4/22 0ff 4/23						•	7.9	10.4	47.7	1.1	0.40	295	2.5	80.0	0.20	8
10use Lov In 4/23 0ff 4/23 High In 4/22 0ff 4/22 0ff 4/22 0ff 4/23 0ff 4/23							8.3	11.8	7.17	0	0.25	315	0	63.0	0.20	001
0ff 4/23 High in 4/22 Low in 4/23 Off 4/23		20	In	4/23			8.1	11.4	76.5	ł	1	1	1.5	82.0	0.12	
0ff 4/23 High In 4/22 Low In 4/22 0ff 4/23 High In 4/23							8.2	11.4	33.9	0	0.70	360	0	65.0	0,40	
High In 4/22 Off 4/22 Low In 4/23 Off 4/23			J 30	4/23			8.1	12.4	6.1.9	17.7	0.40	210	13.5	50.0	0.005	8
High In 4/22 0ff 4/22 Low In 4/23 0ff 4/23 High In 4/22							8.2	12.6	47.7	6.1	0.50	25	7.0	75.0	0.05	-
High In 4/22 Off 4/22 Low In 4/23 Off 4/23							8.1	11.8	46.5	0	0.10	30	0	88.0	0.20	-
0£f 4/22 Low In 4/23 0£f 4/23 H1&h In 4/22	Ħ	18h	In	4/22			8.1	11.8	47.7	0.9	0.20	150	m	65.0	0.10	2
0ff 4/22 Low In 4/23 0ff 4/23 High In 4/22							1	1	ł	ł	!	ł	1.5	65.0	0.15	01
0ff 4/22 Low In 4/23 Off 4/23 High In 4/22					0		8.1	11.6	47.8	0	¢.30	200	0	65.0	0.35	2
Low In 4/23 Off 4/23 High In 4/22			JJ0	4/22	13.6		8.1	11.2	47.8	10.4	0.30	75	12	68.0	0	8
Lov In 4/23 Off 4/23 High In 4/22					6.5		8.1	11.5	47.7	5.2	0.50	250	9	68.0	2.15	-4
Lov In 4/23 Off 4/23 High In 4/22					0		8.2	11.6	47.8	0	0.30	212	0	69.0	0.30	2
Off 4/23	ĭ	5	In	4/23	4.5		8.1	12.7	47.5	1.8	0.43	225	3.0	74.0	0.10	-
Off 4/23 In 4/22					0		8.1	11.7	45.8	0	07.0	97	0	82.0	0.08	
In 4/22) Jjo	4/23	15.5		8.1	12.5	6.7.	13.4	0.20	90	14.5	57.0	0	100
In 4/22					8.1		۳. ۲.	12.4	47.7	6.1	0.80	345	7.0	72.0	0	8
In 4/22					0		8.1	11.4	45.7	0	07.0	S	0	A5.0	0.35	_
10	Ħ	18 h	In	4/22	7.0		8.0	711.4	47.8	1.2	0.20	150	0	65.0	0.10	2
0					1		1	1	1	I	ı	1	1.5	70.0	0.18	으
					0		8.1	11.3	46.5	0	0.50	180	0	70.0	0.33	2

D3

Table Dl (Concluded)

		۱				Hydrolab	٥						Transm	19	
							Dissolved			Current	feter			Nephel-	Nephel-
Inshore Depth Ter	Inshore Depth Ter	Depth Ter	Tet	Tempera	perature	ä	Oxygen	Conductivity the second	Depth	Speed	Direction	Depth 13	Transmission Z	cueter X	Scale
	Octablishe Sake a		l	,		°		8 27	13.2	0.20	210	15.0	35.0	0	82
1 1	7.61 22/4	1 1		9 6		9.0	11:1	47.8	6.1	0.10	120	7.5	68.0	7.0	
0 4.0				7.0		8.1	11.4	43.4	0	0.30	190	0	70.0	0.5	9
	5.5 5617	5		8-7		8.1	13.2	47.6	1.0	0.30	110	7	91.0	0.02	
				4,8		8.1	12.3	7.6	0	3.30	110	0	95.0	0	001
Off 4/23 17.4 3.8	4/23 17.4	17.4		3.8		8.0	11.7	47.8	13.4	0.17	217	15.0	0.69	۰ ۵	001
8.5	8.5	8.5		4.7		8.1	12.3	47.6	6.7	0.20	255	7.5	95.0	0	3.
				4.8		8.1	12.1	77.7	0	0.25	70	0	58.0	0.08	-
	In 4/23 4.1	4.1		4.2		8.2	12.3	47.6	1.5	0.25	45	m	70.0	0.10	2
				9.7		8.2	12.2	47.4	0	0.40	65	0	0.76	0.30	0.
	4/23 16.3	16.3		3.7		8.2	11.9	47.8	14.0	0	225	0.91	68.0	0	8
8.1	8.1	8.1		3.9		8.2	12.2	47.8	7.0	0.5	225	8 0	72.0	0.1	100
0 4.5	0 4.5	0 4.5	0 4.5	4.5		8.2	12.1	47.3	0	7.0	8	0	90.0		2
100 In 5/7 4.0 6.2	2/7 4.0	5/7 4.0 6.2	7.0 6.2	6.2		8.1	10.6	8.97	1.7	0.5	120	3.0	80.0	24.0	001
	0	0 6.5	0 6.5	6.5		8.1	10.2	7.97	0	0.3	110	0	50.0	7.0	2
Off - See Noname/Low Tide/Offshor	See Noname/Low T	See Noname/Low Tide/Offshor	oname/Low Tide/Offshor	ow Tide/Offshor	ö	e.									
High In 4/22 4.1 4.4	4/22 4.1	4/22 4.1 4.4	4.1 4.4	4.4		8.2	12.6	47.7	1.2	0.23	09	3.0	0.49	0.35	≘ :
0	0	0 4.7	0 4.7	4.7		8.3	12.3	47.7	0	0.37	75	0	95.0	0.22	2
de/Offs	See Noname/High Tide/Offs	de/Offs	de/Offs	de/Offs	ع.	hore									
	5/7 3.4	4.6		6.3		8.1	10.1	46.7	ŧ	1	ŀ	2.0	18.0	0.82	and i
				7.9		8.1	9.6	46.5	0	c.33	155	0	0.8	88.0	- 9
16.5	5/7 16.5	16.5		4.3		8.0	8.01	47.8	12.2	0.17	140	12.5	0.99	D (3
8.3	8.3	6.0		5.9		8.1	10.6	47.3	6.1	0.23	220	6.5	0.46	o ;	33
7.9 0				6.4		8.0	6.6	46.3	0	0.97	180	0	19.0	16.0	0
Hob In 4/23 3.0 4.5	In 4/23 3.0	3.0		4.5		8.1	13.0	47.6	1.0	0.80	9	1.5	84.0	0.10	2:
				4.7		8.1	12.5	47.5	0	0.80	30	0	85.0	0.50	2
	4/23 17.0	17.0		3.9		8.1	13.2	47.9	12.8	0.17	270	13.5	0.71	0	2:
	8.8	8.8		4.1		8.1	12.6	47.7	7.9	0.20	80 C	0.0	0,76	0.15	2 5
				5.0		8.1	11.9	47.1	0	0.25	338	0	97.0	77.0	2

(Continued)

Depth, Temperature (temp.), pH. Dissolved Oxygen (D.O.), and Conductivity (cond.) in Micromhos (who) from Inshore and Offshore Locations by Tide. Station, Date, and Depth Table D2

		Cond.		22.7.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	45.5 46.1 15.2	36.5 43.3 9.2	25.0 20.0 11.0	22.24 22.24 22.24
		0.0 11.0		2207071700		11.9	2222	6. 40 - 6. 4. 48 40 41
	Surface	× l		**********	8.0 7.7 7.8	67.7	787.6	7.00
		J.		124.44.60.44.64.64.64.64.64.64.64.64.64.64.64.64.	7.5	97.5	2 × × × × × × × × × × × × × × × × × × ×	****
		Depth		10000000000	0.00		0.00	2 000 2 - 5 1
		Cond.		100000000000000000000000000000000000000	49.9 49.3 45.8	50.0 50.7 48.5	7444 7400 7417	1 62 6 68 6 1 6 6 6
Offshore		0.0		1221110000	13.7	16.1	12.50	1.5.6
130	Hto	FE		707888888	7.9	6.7.		7.59
		Temp.		4277788888	5.7 6.7 8.8	2.4 4.0.5	6.0	2.5 3.3 8.6
		Depth		0.4.6.0.9.9.4.6.4.6.4.6.4.6.4.6.4.6.4.6.4.6.4.6	11.11 8.0 4.2	9.9 1.5.1 5.01	11.13	6.6
		Cond.		250000 200000 2000	50.3 50.5 58.3	50.5 50.8 50.8	27.8 50.6 50.2 48.9	1 050 5
		0.0 ##/		0.000.0	12.0 10.8 10.4	10.7	12.6	1 25.0
	Bottom	띪			7.6	7.6	7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	2.5
		i c		77.00.000	4.2 6.1.9	4.5 8.0	2448	1 25.8
		Depth		24.5 24.5 20.7 20.7 116.0 115.8 115.6	22.5 19.3 8.5	20.1 20.1 20.6	22.2 22.2 13.6	1 2.6
		Cond.	25.5 25.7 25.7 25.7 0.6 0.6 1.7 1.2.7	36.7 42.0 42.0 5.6 6.6 1.0 13.5 13.5	44.0 47.9 14.8	31.1 40.3 8.7	43.9 13.5 4.3	444 444
Inshore		0.0 #8/	11111111111111111111111111111111111111	23.2 113.1 11.7 12.1 12.1 12.1 12.1 12.1	12.5 12.5 11.0	11.8	11.8 12.5 11.8	17.1 12.2 11.5
	urface	핍	00000000000000000000000000000000000000	2.	7 7 8 0	7.9	1.00	to to to
		ij o	3,00,00,300 8,00,00,300	1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	7.4 9.0 8.1	7.9 6.1 8.0	4466	40.00 40.00
	!!	Depth	00000	1000000000	0.7	7.0	0.1	1.00
		Cond.	45.0 45.4 42.2 42.3 6.3 6.3 1	45.54 47.54 47.54 45.05	45.3	45.5 45.2 25.1	46.7	113
Ì	ļ	0.0	1000	12.5.1 10.00 10.00 10.00	12.2	12.9 12.0 10.1	9.3	112
	Botton	핍	2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00	917.87.7.88.7.88	8.0	7.9	8.0 8.0 7.8	11:
		i o	7.7.8 7.7.8 7.9 7.9 7.9	6.5. 6.5. 6.6. 6.6. 6.6. 6.6. 6.6. 6.6.	1.7	7.7 8.8	9.5	1 6
		Depth	0.000	104990644	0.6	0.8 1.0	0.9	110
		Location/ Date	Nonace 4/22 4/29 5/7 5/13 5/19 5/19 6/9 6/17	C11.ff 4/22 4/29 5/13 5/13 5/19 6/3 6/17	Houseboat 5/7 5/13 6/9	Lovell Point 5/7 5/13 6/9	Green- house 4/22 5/7 5/13 6/9	North 4/29 5/6 5/13 6/9

		, 68 84 84 84	25.6 45.6 45.3 19.3	8244 66146	32.30	8484454 8664445464	44444 44444 4444
		6.5	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40000	- 477.5		22222
	urface	퇿	******	77.00.07.	F. 6.00.7	できてころろきててて	******
	S	0.0	4.00	*****		V x x q q v \(\tilde{\tilie}\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde	2.4.4.4. 0.4.4.4.4
		Depth	00000 44444	00000	8.0000		20000
		Cond.	50.55 50.55 50.55 50.55	28882	56.7 56.7 59.3 59.3	204444444 2040404444 244464444	50.7 50.7 50.7 50.1
shore			11.0	2222	11.11 10.3 12.0 12.0 8.0	111415000 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	189110
90	PIK	뇞	7.7.7.7.5		1. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C.C. 2
		Temp.	4422B	2442 (1444)	44.6	44647114608 87840181111	******
		Depth		4.6.000	8.9 10.0 7.2	20-40-1-00-2-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0	2.5. 2.5. 6.6. 6.6.
		Cond.	20.7 50.7 50.6 50.6	50.7 50.6 50.6 7.05	50.7 50.7 50.7 50.5	50.7 50.7 50.7 50.2 50.2 50.3 50.3	50.9 50.9 50.8 50.5 6.9
		D.0.	11.1 10.7 10.6 10.2	11.4 10.5 10.7 10.3	10.3 10.3 10.5 10.5	100000 \$ 0000 100000 \$ 0000 100000000000	23.4.00
	SOLLOR	띮	 	 	66.5.5	, , , , , , , , , , , , , , , , , , ,	
		Terp.	44446	44448	44408 46646	4448888844 4646004648	44446
		Depth	18.2 18.4 10.0 24.1 23.7	6.8 16.6 24.4 24.0	17.9 23.1 19.9 14.4 8.3	10.8 24.6 23.0 23.0 10.7 110.2 16.9	13.6 27.7 27.5 13.5
		Cond.	29.3 46.9 44.5 17.4	33.5 36.1 47.0 6.3	22.5 36.0 25.1 55.0 0.4	0.725 0.725 0.725 0.76 0.76	47.1 46.8 33.4
		0.0 E.0	12.5 12.4 12.4 12.3	12.3 12.5 14.1 12.0	12.7 13.0 14.8 11.8	121101111111111111111111111111111111111	12.2 13.3 10.9 11.6
Inshore	JTf 2Ce	핆	7.7.7.8. 7.7.8.	7.7 8.8 7.7	8.6.6.7.	000000000000000000000000000000000000000	1.0.0.L
	Š	j. 0	4.08 9.09 1.09 1.09	4.4 6.9 8.3 8.3 8.3	5.3 7.6 7.0 6.5	2.7.8.8.6.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	24.00
	1	Depth	0.7	0.7 0.3 0.4 0.3	0.00	0.0000000000000000000000000000000000000	6.0 6.1 6.0 6.1
		Cond.	46.8 47.5 43.9	44.0 47.5	46.9 48.0 46.5	48.7 46.2 136.1	4 4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		0.0 18/	12.8 12.5 11.7	12.5 12.1 10.9	12.7	1227	12.2 12.8 14.0 11.5
	Botton	핆	7.7	7.7	7.8 7.8 8.0 7.9	12.5.	27.77
		Ten C	7.3 8.6 7.0	8.6.9	5.3 7.4 7.3	7.0 9.1	9.00.0
		Depth	1.4	2112	1.6 0.9 0.9	12,81111211	0.13
		Location/ Date	Lovell Point 4/22 4/28 5/6 5/13 6/9	Green- house 4/21 4/28 5/6 5/13 6/9	North 4/22 4/28 5/6 5/13 6/9	CILEE 4/22 5/15 5/19 5/19 5/19 6/9 6/16	Houseboar 4/23 6/5 5/6 6/9 3

APPENDIX E: MEAN CATCHES OF FISH (OTHER THAN SALMON FRY)

Mean Catch of Fish (Not Salmon Fry) by Location Resurrection Bay, Alaska, 1986-1987 Table El

			ļ		;				710	33	2.00	4004
Species	Mean	SD	Greenhouse Mean SD	SD	Mean	SD	Mean	SD	Mean	SD	Mean	an SD
					#I	1986						
Coho Salmon*	1.2	3.2	0.5	1,2	9.0	1.2	1.4	4.2	1.6	3.8	1.6	4.8
Dolly Varden	1.2	2.6	1.0	2.0	1.5	5.5	0.5	1.3	3.0	11.6	3.5	11.1
Sculpin**	1.3	1.5	3.8	6.1	0.3	9.0	0.3	9.0	1.7	2.6	0.2	0.5
Sand Lance	14.6	36.1	0.2	0.7	0.0	0.0	0.1	0.4	1.3	7.7	6.7	37.4
Starry Flounder	0.3	6.0	4.1	7.6	3.9	8.0	1.8	2.6	1.7	3.6	0.0	0.0
Smelt (larvae)	0.2	0.8	0.0	0.2	4.7	29.0	6.0	0.3	6.0	0.3	0.0	0.0
Herring	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	1.5	1.1	5.9
					•	1987						
Coho Salmon	1.2	4.2	7.0	6.0	0.3	6.0	6.0	7.4	10.1	24.3	5.2	15.2
					(Con	(Continued)						

^{*} Juveniles.
** Great and staghorn sculpins.

Table El (Concluded)

	Lov	Lovell	Greent	ouse	North	ch	Noname	He	CLIEE	££	Hous	Houseboat
Species	Mean	SD	Mean SD	SD	Hean	SD	Mean	SD	Mean	SD	Mean	SD
					1987 (Cc	1987 (Continued)	_					
Dolly Varden	8.2	18.4	0.4	6.0	1.0	2.5	0.7	1.4	2.3	5.7	2.5	9.6
Sculpin	0.2	0.4	2.1	5.5	9.0	1.9	3.5	6.6	5.9	14.8	1.3	2.3
Sand Lance	6.3	27.1	0.0	0.0	0.0	0.0	0.0	0.0	9.4	18.8	3.8	18.6
Starry Flounder	0.3	9.0	0.5	1.1	2.0	6.1	7.0	1.0	9.0	1.9	0.9	2.4
Smelt (larvae)	0.1	8.0	0.0	0.1	7.0	2.4	0.2	0.7	0.8	2.3	0.4	1.8
Herring	1.6	8.3	0.0	0.0	0.0	0.0	0.0	0.0	1.9	12.8	3.2	15.0

Mean Catch of Fish (Not Salmon Fry) by Date, Resurrection Bay, Alaska, 1986-1987 Table E2

ng	SD		0.0	0.0	0.0	0.0	0.0	0.0	0.7	6.4	2.5		0.0	0.0	0.2	0.0	1.0	0.5	19.0	17.2	12.9	9.3	9.3	
Herring	Mean		0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.8	0.3		0.0	0.0	0.1	0.0	0.2	0.0	3.7	3.1	3.7	3.5	1.3	
	اما		0.0	0.0	0.0	0.2	29.8	0.0	0.3	8.0	12.6		3.1	0.3	0.0	0.7	0.0	0.5	0.2	1.9	2.5	3.4	1.7	
Smelt (Larvae)	Mean		0.0	0.0	0.0	0.0	5.0	0.0	0.1	0.3	6.0		8.0	0.1	0.0	0.1	0.0	0.0	0.0	0.7	0.8	1.5	0.3	
rry	SD		1.3	0.0	8.9	1.0	3.1	2.0	7.4	6.1	5.3		2.2	0.9	0.9	1.4	7.3	0.3	1.4	3.0	2.1	1.6	2.9	
Starry	Mean		0.5	0.0	5.3	9.0	1.3	0.8	3.7	3.1	2.1		0.7	7.0	0.4	0.5	2.2	0.1	0.5	1.5	8.0	0.7	0.8	
Lance	SD		0.0	0.0	0.0	0.0	15.4	44.3	24.8	13.5	21.0		0.7	0.2	24.8	0.7	24.2	0.2	4.4	21.6	28.8	1.1	16.7	
Sand Lance	Mean	اور	0.0	0.0	0.0	0.0	4.4	11.6	4.2	2.9	3.5	77	0.2	0.0	7.5	0.2	6.8	0.0	1.2	5.4	9.4	0.4	3.3	
1n**	SD	1986	0.7	0.0	1.5	1.3	1.9	2.6	3.5	5.9	3.1	1987	14.3	12.9	12.6	4.2	0.9	0.7	1.9	2.8	2.4	1.2	7.9	
Sculpin**	Mean		4.0 0.0 0.0 7.0	8.0	1.2	1.8	3.2	1.3		4.6	5.2	4.7	1.4	0.4	0.3	1.1	1.6	1.2	6.0	2.2				
.1y	S		0.0	0.0	0.0	1.5	10.5	2.5	12.1	2.7	7.1		7.0	0.2	7.2	13.3	9.1	6.1	10.3	17.6	10.3	1.2	9.6	
Dol	Mean		0.0	0.0	0.0	0.4	2.0	1.0	5,3	2.1	1.8		0.1	0.0	1.6	4.2	3.5	2.2	0.9	5.1	3.4	6.0	2.7	
Coho 1mon*	SD		0.0	0.0	0.0	0.0	6.0	9.0	2.9	6.3	3.3		0.0	0.2	6.0	8.4	1.8	12.2	33.2	5,3	16.3	7.7	13.4	
Coho	Mean		0.0	0.0	0.0	0.0	0.2	0.2	1.3	8.8	1.1		0.0	0.0	0.2	2.3	1.0	4.0	18.7	3.4	8.4	0.9	4.0	
	Week		4/3-4	4/9-10	4/14-16	4/27-5/1	5/4-9	5/11-15	5/18-22	6/15-20	A11		4/20-24	4/27-5/1	5/4-9	5/11-15	5/18-22	5/25-29	6/1-5	6/8-13	6/15-20	6/22-26	A11	

^{*} Juveniles. ** Great and staghorn sculpins.